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Active-Cavity Laser Optomechanics 
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(a)The coupling of an optical field 
and a mechanical oscillator 

through forces induced by light has 
been a subject of long-standing inter-
est and an important tool to study 
fundamental physics. Numerous 
experiments have used light-induced 
forces in optical cavities to demon-
strate phenomena such as laser cool-
ing and regenerative oscillation. The 
prevalent research focuses on passive 
optomechanics, in which a passive 
optical cavity housing a mechanical 
oscillator interacts with a population 
of circulating photons produced by 
an external laser.

In 2015, we experimentally 
demonstrated a scheme with an 
active optical oscillator (laser) and 
mechanical oscillator integrated 
in the same cavity.1 The resultant 
impacts are twofold. First, this 
marks a new era for optomechanics, 
from passive to active cavities. 
Compared with a typical passive 
optomechanical system, active 
cavities show an orders-of-magni-
tude stronger light–matter interac-
tion, with regenerative mechanical 
oscillation having an amplitude 
1,000 times larger than typical.

Second, the optomechanical 
laser is able to self-sweep its 
wavelength across 23 nm without 
any need for external modulation. 
The sweeping frequency can be as 
large as a few megahertz. This fast, 
wide-range laser self-swept source 
is ultra-efficient in power consump-
tion and super compact—exactly 
what is needed for frequency-
modulated continuous-wave lidar, 
optical coherence tomography and 
3-D cameras.  

The optomechanical laser is 
implemented by a high-contrast-
grating (HCG), electrically pumped 
vertical-cavity surface-emitting 
laser (VCSEL) at 1,550 nm.2 The 
HCG is an ultra-lightweight (130 
pg) grating with near-wavelength 
period and less than 200 nm thick-
ness, designed to reflect more than 
99.5 percent of the surface-normal 
light and serve as the top mirror of 
the VCSEL.3 The mirror is held by a 
micromechanical spring.

Once the VCSEL is DC-biased 
above threshold, the laser causes the 
HCG to move by radiation pres-
sure. This changes the laser cavity 
length and the lasing wavelength. 
Coupled with the HCG’s reflection 
spectrum, the change of lasing 
wavelength leads to a change of 

(a) Schematic of the self-wavelength-swept laser using active optomechanics. (b) Scanning 
electron microscope (SEM) image of the still HCG and its self-oscillation at fundamental 
mode. The fast scanning rate of the SEM produces a stroboscopic effect that leads to a peri-
odic distortion of the self-oscillating HCG bars in the SEM image. (c) The time-resolved lasing 
wavelength of an HCG-VCSEL.

intra-cavity optical power, and thus 
the radiation pressure on the HCG 
itself. This optomechanical coupling 
can sustain self-oscillation of the 
HCG mirror with an unprecedented 
amplitude of more than 550 nm. We 
believe that the work could open up 
new research and applications. OPN
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