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METAMATERIALS

Nonmagnetic Metamaterial  
Waveguides 

Optical metamaterials provide 
exciting prospects for tackling 

fundamental challenges in photonics.1 
A major opportunity lies in precisely 
manipulating light in integrated optics 
systems such as in sensors and optical 
circuitry. Such applications currently 
use photonic-band-gap materials 
or plasmon polaritons on material 
interfaces to benefit from strong 
light confinement. Unfortunately, 
plasmon-based waveguides suffer from 
a trade-off between the light’s confine-
ment and its propagation range.2 For 
long-range applications, researchers 
have increasingly relied on the diverse 
optical properties of all-dielectric 
metamaterials.3 

Can one design an optical device 
in a waveguide geometry using these 
dielectric metamaterials? This year, we 
proposed a design tool for dielectric 
metamaterial waveguides based on 
coordinate transformations.4 Our 
approach allows us to transform light 
trajectories along a two-dimensional 
plane until they conform to the needs 
of the application in question.

As other research has shown, 
specific metamaterials may implement 
such coordinate-based light trajectories, 
leading to impressive optical designs 
such as invisibility cloaks.5 For 
integrated optics systems where light 
travels along the surface of an optical 
chip, however, the exact reproduc-
tion of Maxwell’s equations leads to 
impractical and bulky designs, with 
metamaterials packed both inside and 
outside of the waveguide.

In our work, we have developed 
a specific materialization of the 

coordinate-transformed waveguide 
that uses artificial metamaterials only 
inside the waveguide core. To achieve 
this, we reproduce not the entire set of 
Maxwell’s equations, but only those 
that characterize a guided mode. This 
provides a waveguide design consist-
ing of a uniaxial metamaterial core, 
complemented with a specific thickness 
variation of the core’s boundaries. The 
higher the coordinate deformation, the 
more the core’s anisotropy and thick-
ness increase to steer the light in the 
desired direction, while preserving the 
continuity of its transverse profile at 
the waveguide’s interfaces (see figure).

Our designs of a beam bender, 
beam splitter and conformal lens 

Coordinate-based design of dielectric waveguides (a to c) results in all-dielectric metamaterial cores 
of varying thickness that can bend (d), split (e) and focus (f ) light. Anisotropy of the metamaterial 
core (colored plane) and the thickness variation (grey floating surface, representing the upper inter-
face) successfully manipulate in-plane magnetic fields (g), (i) and (j). Without a thickness variation 
the beam bender does not perform as desired (h). 

efficiently reproduce the desired light 
flows along the waveguide plane. Our 
work, we believe, paves the way for 
long-range, low-loss manipulation of 
confined light with multifunctional 
coordinate-based waveguides. OPN
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