Extremely Large Telescopes

The next generation of ground-based infrared telescopes will have resolving power far beyond what is available today-potentially expanding our astronomical reach to the edges of the universe. For more on astrophotonics, see this month's cover article beginning on p. 26 .
Each of the GMT's
mirror segments

$$
\begin{aligned}
& \text { will measure } 8.4 \text { m } \\
& \text { and weigh } 16.5 \text { tons }
\end{aligned}
$$

PERSON
1.8 m

Giant Magellan Telescope (GMT)

The GMT will have $80 \times$ the collecting area and resolving power $10 \times$ greater than the Hubble Space Telescope.

FIRST LIGHT: 2024
LOCATION: Las Campanas, Chile
ALTITUDE: $2,500 \mathrm{~m}$
WAVELENGTH: $0.32-25 \mu \mathrm{~m}$
COLLECTING AREA: $368 \mathrm{~m}^{2}$
APERTURE DIAMETER: 24.5 m

The Extremely Large Telescope (ELT)

The ELT will have $256 \times$ the light gathering area and provide images $16 \times$ sharper than those from the Hubble Space Telescope.

FIRST LIGHT: 2025 LOCATION: Cerro, Chile ALTITUDE: $3,060 \mathrm{~m}$ WAVELENGTH: $0.37-14 \mu \mathrm{~m}$ COLLECTING AREA: $978 \mathrm{~m}^{2}$ APERTURE DIAMETER: 39.3 m

Thirty Meter Telescope (TMT)

The TMT will have $156 \times$ the collecting area and resolution $12 \times$ sharper than that of the Hubble Space Telescope.

FIRST LIGHT: 2027
LOCATION: Mauna Kea, Hawaii, USA
ALTITUDE: $4,050 \mathrm{~m}$
WAVELENGTH: 0.31-28 $\mu \mathrm{m}$
COLLECTING AREA: $655 \mathrm{~m}^{2}$
APERTURE DIAMETER: 30 m

