LLNL's **Nexawatt** 200 PW

Toward Exawatt Power

↑ ↑ ith up to 10 petawatts of peak laser power, the EU's three ELI facilities include the most powerful lasers to date (see cover story, p. 30). A planned fourth ELI pillar and a few other high-intensity laser projects could boost peak power even further, reaching the exawatt scale.

4th Pillar

200 PW

DESIGN: The ELI concept includes plans for a 4th pillar that would coherently superpose up to ten 20-PW beamlines, bringing 200 PW to bear on the target LOCATION & TIMING: TBD **DESIGN:** The Nexawatt concept would extract full potential of the disc amplifiers in a NIFlike beamline (25 kJ), but use a

DESIGN: The XCELS is based on phase-locking of 12 laser channels, each delivering up to 15 PW, resulting in almost 200 PW of power

LOCATION: Nizhny Novgorod XCELS (Exawatt Center for Extreme Light Studies)

EXPECTED COMPLETION: TBD

China's

100 PW

different compressor design to confine this energy to a 100-fs pulse, resulting in peak powers of >200 PW

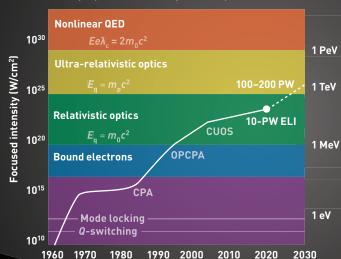
LOCATION: Lawrence Livermore National Laboratory, USA

EXPECTED COMPLETION: TBD

DESIGN: The SEL laser will use coherent beam combination, generating four 30 PW pulses to deliver 1.5 kJ in 15 fs, for peak power of 100 PW

Russia's

XCELS


200 PW

LOCATION: Shanghai High-Repetition-Rate XFEL Station of Extreme Light (SEL)

EXPECTED COMPLETION: 2023

HIGH-INTENSITY LASER INTERACTIONS

Intensity depends on both laser power and spot size

FIELDS OF STUDY

Quantum chromodynamics

QED effects in a vacuum

Relativistic interactions

Plasma physics

Atomic physics