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Ultra-High-Speed Time-Frequency 
Signal Processing

Dynamic real-time spectrum analysis (RT–SA) 
and processing of high-speed broadband 

waveforms is fundamental to many important 
applications, including broadband commu-
nications and radar technologies,1,2 ultrafast 
characterization, sensing and spectroscopy3 and 
radio astronomy research.4 These applications 
require real-time computation of the Fourier 
transform (FT) of the incoming temporal signal. 
Further, that computation must take place in a 
continuous and gap-free manner (that is, with-
out dead times in acquisition or processing), over 
instantaneous frequency bandwidths above the 
GHz range, and with temporal resolutions of a 
few nanoseconds or shorter.

These performance specifi cations lie beyond 
the reach of available RT–SA solutions, includ-
ing the most advanced digital signal processing 
(DSP) methods.4 Among other potential analog 
processing alternatives, dispersion-induced 
frequency-to-time mapping enables RT–SA of 
short, isolated pulse-like signals, but it can-
not be extended to the continuous waveforms 
most often found in practice.3 Recently, we have 
overcome this limitation, proposing and dem-
onstrating a universal analog signal processing 
architecture that achieves a direct and contin-
uous time-mapping of a gap-free short-time 

Fourier transform  or spectrogram—the prime 
method for full dynamic Fourier analysis or 
joint time–frequency (T–F) signal representa-
tion—for an arbitrary (even infinitely long) 
incoming waveform.5

The proposed approach, referred to as a 
time-mapped spectrogram (TM–SP), is strik-
ingly simple. It involves a suitable combination 
of short-pulse temporal sampling, followed by 
dispersive delay. The TM–SP exploits the rich 
mathematics of the dispersion-induced tem-
poral Talbot or self-imaging eff ect. Using this 
concept, we have designed and demonstrated a 
photonics-based scheme for continuous, g ap-free 
RT–SA of broadband microwave signals over an 
instantaneous frequency bandwidth approach-
ing 5 GHz, with a temporal resolution down to 
a few nanoseconds, and at a computation speed 
of nearly 5 billion FTs per second.

This performance is orders of magnitude 
beyond the capabilities of existing solutions, ful-
fi lling critical requirements across a wide range 
of fields. Furthermore, the proposed concept 
provides direct access to the full joint T–F dis-
tribution of the waveform under analysis in the 
physical time domain, thereby enabling entirely 
new possibilities towards real-time analysis and 
processing of broadband waveforms. OPN

Under the time-mapping spectrogram concept, temporal sampling of 
the signal under test (SUT), with a sampling period TR, generates a set 
of frequency-shifted copies of the SUT. Subsequently, these frequency-
shifted spectral copies (spaced by ωR = 2π/TR) are delayed with respect to 
each other by an amount TR  through the frequency-dependent (dispersive) 
time-delay unit. The interference among the simultaneously time-delayed 
and frequency-shifted copies of the SUT produces a 1D temporal pattern 
that follows the 2D short-time Fourier transform or spectrogram of the 
SUT in a continuous, gap-free fashion.
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