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T here is an increasing demand for robust, 
rapid-response computer vision systems. 
But perceptions of the natural world can be 
overwhelming in their complexity. Given 
that the computational costs of machine 

learning grow faster than the size of computed data, 
how can we scale machine learning for large volumes 
of data—including patterned or delayed information 
embedded as “noise”? 

Clearly, as human beings, evolution has provided us 
with the ability to efficiently navigate an ever-changing 
world, interpret our experience and make decisions—an 
astonishing capability, given the immense volumes of 
data that we process, its moderate likelihood of being 
distorted, its fickle temporal availability and its vari-
able information content. Flies and other insects, facing 
their own version of this problem, have evolved optical 
and neural mechanisms that rapidly and efficiently fil-
ter visual information to find what is important amid 
variable environmental conditions. In thinking about 
the data-processing demands of machine vision, we 
can probably learn a lot from insects.

In this feature article, we look at some of the ways 
insect visual systems have solved the information prob-
lem—and how those solutions could inform computer 
vision architectures. After summarizing some essen-
tial aspects of insect vision and their intricate optical 
and neural components, we propose an insect-inspired 

design framework that involves optical encoding, sparse 
sampling with spatial compression, and shallow hard-
ware postprocessing. Such a framework, we believe, 
can produce machine vision systems that can reliably 
extract higher-level signals in the face of noise—and 
can do so with lower computational costs than systems 
based on deep learning.

From bio-inspiration to “biospeculation”
Fast-flying insects such as flies offer a particularly illu-
minating place to start. As anyone who has attempted 
to swat one can attest, flies have record-speed reflexes, 
as measured by their light-startle response. They phys-
ically react to a flash within milliseconds, faster than a 
typical camera frame rate. A speedy fly can travel about 
10 m/s, covering a thousand times its body length in 
only a second—the equivalent of Superman flying at 10 
times the speed of sound. The fly manages a range of 
impressive, high-speed maneuvers in response to visual 
stimuli—and the mechanisms it has evolved for doing 
so may well offer a key for robust high-speed analyses 
in optical image processing and future camera designs.

Moths offer another inspiring case. These insects 
can fly and find their way in cluttered environments 
at extremely low light levels and see with sensitive 
color vision. Their special eye structures and visual 
capacities may well provide an example for low-light 
camera systems. 
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Insect eyes showing multiscale, meso-ordered optics
Left: A green long-legged fly (top) and its characteristic facet pattern with alternating rows of corneal interference reflectors 
(bottom). Center: The Mourning Cloak, a diurnal butterfly (top) and the polycrystalline domains of corneal nano structures on 
one of its facet lenses (bottom). Right: A Hemianax papuensis dragonfly (top) with fractal nanostructures (bottom) on its wings. 
D.G. Stavenga et al. J. Comp. Physiol. A 203, 23 (2017) / K. Lee et al. Sci. Rep. 6, 28342 (2016) / E.P. Ivanova et al. PLOS One 8, e67893 (2013); CC-BY 4.0
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These insect examples for imaging technology, how-
ever, raise other questions. How can computer vision 
systems actually achieve the robust, high-speed signal 
processing of flying insects? How do insects find each 
other in noisy environments? How do they efficiently 
sample data with so few receptors and quickly process 
the information with their small brains?

Extensive studies on insects’ visual sense suggest 
many things that would be desirable to reverse-engineer. 
Today’s high-field-of-view optics are often heavy or 
bulky; lidar scanning systems have a limited angular 
acuity; computer vision approaches can be complex 
and energy intensive. Most unmanned aircraft systems 
(UAS) currently offload computing to ground-based 
computers or use GPS or other networked, distributed 
data for navigation. The fly’s obstacle-avoidance and 
landing abilities would be useful in UAS technology. 
Insects’ capacity to locate each other—again, despite 
having few sensors—could inspire the development 
of tranceivers for free-space communication systems. 
Arthropod-inspired designs have already been suc-
cessfully applied in wide-field-of-view and 3D cameras. 

We should be cautious about interpreting too much 
function from form. Nature does not globally optimize, 
but rather evolves based on adjacent possible steps. 
Though we might associate form and function, insect 
morphology may not always produce the specific func-
tions we impute to it. Current UAS integrated vision 
sensor technologies do not mimic biological systems 
directly, but instead advance through improvements 
based on subtle understanding of insects’ systems.

Research in this domain thus involves consider-
able “biospeculation,” through which one can move 
beyond bio-inspiration to inverse-engineer and assert 
the possible functionality apparently possessed by 
insects. Biospeculation deals with functions that, 
while they may exist, would be hard to validate—yet, 
nonetheless, they serve the conceptual development 
of technological applications.

Insect eyes, insect brains
Extensive studies on arthropod eyes, especially in recent 
decades, have yielded detailed insight into their inner 
workings. Insects have compound eyes composed of 

numerous anatomically identical building blocks, the 
ommatidia, each one capped by a facet lens. This struc-
ture allows an easy estimation of the number of “pixels” 
of an insect eye. In the tiny fruit fly Drosophila, about 
800 ommatidia make up an eye; in the larger dragon-
flies, this number can go up to 20,000. In a 2009 review 
of the fruit fly’s imaging system, the neurobiologist 
Alexander Borst asked rhetorically: “Who would buy 
a digital camera with a fisheye lens and a 0.7 kilopixel 
chip, representing a whole hemisphere by a mere 26×26 
pixels?” Flies quite sensibly do.

Fly eyes have eight photoreceptors per ommatid-
ium, but in most other insects, such as bees, butterflies 
and dragonflies, an ommatidium contains nine photo-
receptor cells, each with a characteristic spectral and 
polarization sensitivity. Together, each of these pixels 
captures information from a limited angular space, 
generally on the order of one degree half-width. 

The facet lenses focus incident light onto the photo-
receptors, where it is absorbed by their visual pigment 
molecules, the rhodopsins. These molecules trigger a 
molecular phototransduction chain, which depolarizes 
the photoreceptor’s membrane potential. This is then 
fed forward to the higher neuronal ganglia, which 
together form the visual brain.

Vision is central to a fly’s life; approximately 70% 
of its brain is dedicated to processing incoming visual 
data. Generally, flying insects have brains with 100,000 
to 500,000 neurons and a mass of less than 1 mg (esti-
mated from a volume of 0.08 mm3, assuming a dry 
weight of 0.25 mg). With an estimated 50-mW power 
demand, the brain consumes 10% of the animal’s total 
metabolic power. With that basic equipment, insects 
achieve image-processing speeds as high as 200 fps—
about an order of magnitude faster than humans’ 
response to visual stimuli. 

Clustered sensors and typologies
The construction of the eyes, the polarization and spectral 
properties of the photoreceptors, and the organization of 
neuronal processing strongly correlate with an organism’s 
lifestyle and habitat. In the apposition eyes of diurnal 
insects, like bees, the photoreceptors in an ommatid-
ium strictly receive light only via their overlying facet 

Flies and other insects have evolved optical and neural 
mechanisms that rapidly and efficiently filter visual information to 
find what is important amid variable environmental conditions.
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lens. By contrast, in the optical-superposition eyes of 
nocturnal insects, like moths, a photoreceptor gathers 
light from up to hundreds of facets. 

Furthermore, in many cases, eyes are regionalized. 
Male fly eyes have a specific area, the “love spot,” ded-
icated to detecting potential mates. Honeybee drones 
have specialized the main dorsal part of their eyes for 
spotting a honeybee queen as a contrasting dot in the 
sky. Ant and cricket eyes have a dorsal rim, dedicated 
to analyzing the polarization pattern of sky light. But 
the common backswimmer, Notonecta glauca, has ventral 
eye parts endowed with polarization vision.

The facet lenses of insect eyes are often covered with 
intricate nanostructures that vary from earwigs to bees 
to butterflies and moths. These nanostructures may offer 
antireflective and glare-reducing surfaces or provide 
anti-wetting hydrophobic surfaces to keep lenses clean.

Transmission electron microscopy identifies distinct 
optical patterns in the facet lenses of daytime predatorial 
insects and hovering insects. These are mostly random, 
flat patterns, but the facet lenses of horseflies and deer 
flies, scorpionflies, dragonflies, and long-legged flies 
carry 1D interferometric Fabry-Pérot spectral filters. 
Meanwhile, in moths and butterflies, polycrystalline 
lattices made up of corneal nanonipples exhibit more 
periodic patterns. Preliminary phylogenetic analyses 
and optical modeling of these structures suggest that 
daytime and nighttime insect structures differ in their 
optical function. Patterns on the insect eyes can exhibit 
multiple scales of order and photonic-crystal-like arrays.

Moving from lens to brain, several broad neural-circuit 
models of insect perception involving optical flow or 
polarization detection have been advanced. Reichardt 
detectors are neural-circuit models that rest on identifying 
motion. These include a low-signal-to-noise adaptation 
that provides an event signature—that is, a nonzero signal 
when an object passes with a time delay across adjacent 
inputs—and a high-signal-to-noise adaptation, provid-
ing more complex, differential-movement information. 
Higher-level memory, cognition, decision-making and 
sensorimotor responses build on these outputs in more 
complex neural systems that include circular networks.

Another broad neural-circuit model, studied in the 
horsefly Tabanus bromius, rests on combined polariza-
tion, spectral and intensity information. Specifically, 
the difference signals between orthogonally oriented 
microvilli are mixed with the difference between signal 
intensities from nonpolarized receptors. This mixture 
provides spatially encoded polarization information 
in a single output signal.

Some butterfly and moth compound eyes have lenses coated 
with additional raised nanostructures. Those of the Mourning 
Cloak butterfly (shown here) are polycrystalline with random rota-
tional order, and defects between crystals at grain boundaries.

Left: Daytime predator and carrion-seeking insects have random, 
shallow protrusions with spectral gratings. Right: Hovering butter-
flies and moths have ordered, raised corneal nanostructures. 

The eye of the aquatic insect Notonecta glauca includes zones 
of preferential polarization absorption, dictated by variations in 
microvilli orientations of adjacent R7 and R8 polarization-sensitive 
photoreceptors across different zones in the compound eye.

Left: In apposition eyes, ommatidia are optically isolated. The 
rhabdo meres—visual pigment-containing organelles of the photo-
receptor cells—together form a fused rhabdom (red), which receives 
light through a single facet lens. Right: In superposition eyes, several 
lenses focus light onto a rhabdom across the clear zone (CZ). 

Corneal nanostructures in insects
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From fly vision to UAS vision
It’s interesting to note that, while there’s been substan-
tial progress in implementing computer vision on small 
UAS for autonomous navigation and obstacle negotia-
tion, the results of the algorithm-centered pipelines of 
UAS vision systems remain generally inferior to the 
evolved abilities of flying insects.

Conventional UAS pipelines process images from 
one or more cameras, and often the video data are 
composed of high-pixel-count, low-frame-rate image 
sequences. Subsequent frame-by-frame image pro-
cessing predicts 3D movement in the environment by 
detecting and tracking features. Such a framework 
generally demands additional filtering to remove out-
liers and generate reliable 3D models. These real-time 
calculations—requiring throughputs of trillions of 
operations per second (TeraOPS)—are viable only with 
GPUs or specialized hardware designed for parallelized 
calculations.

In addition, such feature-detection algorithms often 
miss small, few-pixel-wide or pixel-sized objects, com-
plicating aerial negotiation around cables, bare tree 
branches and netting. In photon-starved environments, 
a typical camera’s setting is limited to either a short 
integration time, resulting in noisy pixels, or a long inte-
gration time, resulting in motion blur—both of which 
adversely affect the performance of feature-detection 
algorithms. Dirt or condensation on camera lenses result 
in image degradation from blur or scattering that fur-
ther compromises algorithm performance. And when 
a feature-detection algorithm fails for these or other 
reasons, the entire computer vision pipeline fails, ren-
dering the UAS unsafe to operate. 

We have wondered if some key components of the 
fly’s snapshot reflexes might lie not only in its neural 
processing but also in its optics—and how those com-
ponents might be applied to UAS vision systems that 
can operate with low size, weight and power (SWaP). In 
advanced integrated vision sensors, modules leverage 
optics that pair with vision chips and tailored pro-
cessing units. The processor can be programmed with 
firmware to operate and acquire visual information in 
tightly integrated devices that are optimized for high 

performance and small size. In such a framework, optics 
can encode information in such a way as to flatten the 
computational needs associated with image processing. 
The general scheme involves optical preprocessing, 
sparse sampling and high-speed, shallow optimization, 
mimicking the neural-circuit models of insect vision 
in quick, feed-forward calculations. 

The virtues of “small brains”
Rather than use high-resolution images and multiple 
layers (with relatively long optimization times), as in 
conventional UAS vision pipelines, integrated vision 
sensors modeled on insect vision, enabled by optical 
preprocessing, can focus on low-pixel-density images, 

The construction of the eyes, polarization and spectral properties 
of the photoreceptors, and organization of neuronal processing 
strongly correlate with an organism’s lifestyle and habitat.

Neural circuits associated with Tabanus bromius horseflies 
mix polarization and intensity signals, processing input 
from paired polarization-sensitive detectors (R7 and R8) in 
orthogonal horizontal and vertical microvilli, coupled with 
unpolarized signals from other photoreceptors (R1 to R6).

Small-brain feed-forward neural circuits
Data flow from inputs at the top to correlation at the bottom, 
where inputs are signals from different photoreceptors.

Proposed Reichardt detectors, hypothetical neural circuits 
postulated for insect brain motion tracking. It is thought 
that processing switches from (left) event signals to (right) 
motion signals with an increasing signal-to-noise ratio. 
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coarse image reconstruction and quick, back-end cal-
culations. This kind of system can be described as one 
having optically encoded signals that are decoded by 
a “small brain.” With machine-learned neural-network 
(NN) models, small brains (whether they are initialized 
as small or become small via brain pruning) can have 
faster inference speeds after training, lower storage 
requirements, minimized in-memory computations 
and reduced data-processing power costs. The disad-
vantage is that the small-brain NN system’s learned 
functions are highly dependent on training, meaning 
the outcomes are data- and task-driven (and thus gen-
erally less adaptable to truly novel situations).

Such an approach has already been demonstrated 
using the simplest of all optical encoders—pinhole optical 
encoders. These diffractive encoders, which achieve a 
field of view of almost 180 degrees, offer high signal com-
pression and coarse image reconstruction—potentially 
significant advantages for applications that prioritize 
high-speed reconstruction and lightweight hardware. 
Although the level of image coarseness from pinhole 
encoders prevents them from picking out details, they 
are capable of registering small obstacles in real time 
in a way that onboard high-definition cameras cannot.

In future integrated vision sensors, preprocessing 
from corneal nanostructures may serve in ways that go 
beyond antiglare optical functions—a design approach 
that is commonly ignored by researchers implementing 
insect-vision-inspired UAS. A pipeline involving cor-
neal nanostructures would be in the spirit of lensless 
diffusers and other encoded computational-imaging 
approaches employed in computer vision today (see 
“Losing the Lens,” OPN, July/August 2021). In the spe-
cific pipelines that involve sparse sampling and shallow, 
feed-forward processing, an insect-inspired model could 
offload significant computation costs to parallel optical 
preprocessing by corneal encoders.

In sum, the advantages of small-brain electronic 
decoding are speed and robustness—and, in a NN 
framework, lower training-data requirements. For cer-
tain technologies such as UAS, speed and robustness 
may be prioritized over high-resolution image recon-
struction. Certainly, the fly’s evolutionary commitment 
to this approach has been successful. 

Integrated vision sensors modeled on insect vision, enabled by 
optical preprocessing, can focus on low-pixel-density images, 
coarse image reconstruction and quick, back-end calculations.

Preprocessing with optical encoders can provide spatial signal 
compression to minimize the model size, either for detecting 
features, for example for image classification (center), or for 
filtering noise, for example for image reconstruction (bottom). 
In both cases, the optical preprocessing results in a smaller 
model with reduced computational load.

Schematic view of a dense, fully connected multilayer neural 
network used for image processing in which inputs are trans-
formed to outputs via a learned model. 

The power of optical preprocessing
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Compressed sensing
Compressed sensing refers to the ability to achieve a higher 
resolution compared with the conventional Nyquist sam-
pling measures, through sparse signals and signal mixing. 

When signals are spatially 
mixed, multiple dimensions 
of information—shape, color 
and polarization, for example 
—may be captured in fewer 
measurements.

It has been proposed that 
micro-saccadic eye and body 
movements improve visual 
acuity and spatial resolution. 
Disorder in optical encoders 
may provide a similar function 
in engineered systems (and 
in insect eyes): disordered 
materials provide signal mixing, 
which offers the sensing of 
more information with fewer 
measurements.

Coherent optical preprocessing 
Analog optical signal processing generally requires coherent 
light. Sunlight, while generally thought of as spatially incoher-
ent, is coherent over small distances. The spatial coherence 

length of sunlight can be as long as 
tens of microns—still large relative 
to nano meter length scales. Even so, 
coherent optical image processing 
would appear to be more prominent 
with nocturnal insects. With night-
time insects, visual data are spatially 
pooled in superposition eyes, and the 
partial coherence of light for visual 
signal processing in such eyes plays 
an important role.

While moonlight appears less 
spatially coherent than light from the 
sun, the coherence length of starlight 
is expected to be higher than that of 
sunlight, since the angle subtended 
on the Earth from stars is smaller. 
Starlight’s coherence length thus 

is potentially on the order of kilometers. There are numer-
ous examples of coherent and analog image processing in 
optics, some of which may be decoded with simple electronic 
back-end decoders.

Polarization encoding and filtering
The natural environment is full of polarized information, from 
light reflected off of surfaces to light scattered from the sky. 
Polarimetric sensing could ease object surface detection and 
texture identification, enabling rapid feature extraction and nav-
igation. Insects rely on their sense of polarization; semi-aquatic 
insects, for instance, can be fooled into laying their eggs on 

synthetic reflective sur-
faces, such as cars, glass 
and polished stones, and 
in “polarization light traps” 
rather than water. Other 
insects rely on the celestial 
polarimetric signatures from 
the sky for navigation, an 
ability that can be severely 
limited by night-glow or light 
pollution from urban areas.

Polarization information 
also can enhance the signal 
or image in turbid media, 
enable seeing of otherwise 

invisible objects and be used to interpret the shape and 
refractive index of objects, among other things. Polarimetric 
encoding via simple pixel sensors thus opens possibilities for 
inferring higher-dimensional information in the environment. 

Colorimetric encoding and filtering
Colorimetric encoding could enable filtering of noise, isolation 
of object spectral signatures or interpretation of 3D structure 

for a white object. For 
instance, the long-legged 
Condylestylus fly, a daytime 
predator, is far from 
stealthy; its entire body, 
including eyes and wings, 
is shiny and iridescent, 
making it easy to spot. 
The fly’s compound eyes 
comprise alternating red- 
and green-reflecting rows. 
Like dark-field condensers, 
the ommatidia of these 
flies accept filtered conical 
spatial modes. In a similar 

spirit, the rainbow dispersion from thin films has been lever-
aged in 3D computational-imaging systems.

Insects commonly have a visual range extending into the 
UV and less into the red wavelength range. One explanation is 
that IR information is noisy due to thermal blackbody radiation, 
particularly for nighttime photon-starved vision. As a 2021 
review by C.J. van der Kooi and colleagues pointed out, “the 
solar half of the sky contains more long-wavelength light, 
but the antisolar half contains more UV radiation.” From an 
information-theoretic standpoint, the cues from UV signa-
tures are more reliable, more robust and less noisy, providing 
higher-contrast imaging for some insects.  

Modes of optical preprocessing
Insect eyes and insect brains may use a variety of optical-preprocessing schemes to 
support visual systems of unparalleled efficiency. Here are some examples. 

M. stellatarum super-
position compound eye

Sparse photoreceptor 
arrays in Drosophila

Spectral filters of 
the striped horsefly

Scarab beetle polarization

Beetle and photoreceptor images published with permission of Springer Nature. 
Complete image credits are available online at optica-opn.org/link/1123-insect-vision.

300 μm

Clear 
zone
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In work over the past several years, we have attempted 
to quantify some of those benefits. In our experiments, 
vortex encoders were used in front of a lens, and lin-
ear intensity pixels were captured in the Fourier plane, 
which spatially compresses the intensity pattern. This 
pattern was then fed to a shallow single- and dual-layer 
NN—composed of linear and nonlinear activation func-
tions—which was found to stably achieve image contrast.

We found that in our small-brain setup, when 
noise was added in the image and in the optically 
encoded sensor plane measurements, the image contrast 
remained, although parts of images disappeared. On 
the other hand, using a more complex, deep-learning 
convolutional NN under similar noise conditions, the 
reconstructed images became almost unrecognizable. 

In other words, the tradeoff of having a model that 
produces lower-fidelity images in the absence of noise 
is robustness and reliable performance in the presence 
of noise.

Meanwhile, nonlinearities in the form of logarith-
mic responses can give a sensor the ability to operate 
over a wide dynamic range of lighting conditions. An 
insect flying through a forest in daylight may simul-
taneously observe a bright sunlit patch of ground and 
a nearby deep-shadowed area with a radiance three 
orders of magnitude lower. The logarithmic response 
at a front-end sensor means it can easily capture pix-
els embodying environmental information at a range 
of ambient light levels.

Toward insect-vision-inspired  
flight control
How far can we take the insect vision model? Whether 
low-resolution vision systems can be used to guide a 
flying machine has been studied extensively. Early experi-
ments, published in 2000, used a single, downward-aimed 
optical flow sensor to provide a fixed-wing aircraft with 
autonomous altitude hold while flying forward. The 
biologically inspired optical flow algorithm relied on 
input from 18 rectangular logarithmic-response pixels 
and analog image-processing circuitry, with processing 
performed with an 8-bit microcontroller running at about 
1.5 million operations per second (MOPS)—and acquired 
imagery at a 1.4-kHz frame rate. Later implementations, 
involving an 88-pixel analog neuromorphic-vision sensor 
chip operated by a 10-MOPS microcontroller, achieved 
a high degree of reliability, including holding altitude 
over snow on a cloudy day. 

Like a compound eye, sensor arrays may support 
obstacle avoidance using optical flow algorithms based 
on fruit flies. In experiments reported in 2002, three 

Simple optical preprocessing with pinhole diffraction provides a 180-degree field of view. The printed pinhole (shown 
between forceps) is mounted on a Centeye 125-mg TinyTam 16×16 sensor. A US penny is provided for scale. Courtesy of Centeye

A single-layer neural network (SNN) with additional optical 
preprocessing (in the form of a vortex lens encoder) enabled 
the robust classification of MNIST handwritten digits. At 
low noise levels (high SNR), classification accuracies are 
comparable to deep-learning convolutional neural networks 
(CNNs). At high noise levels (low SNR), the SNN with vortex 
encoders significantly outperforms the CNNs. Insets show 
noisy images without encoding.
B. Muminov and L.T. Vuong, Proc. SPIE 11388 (2020), doi: 10.1117/12.2558983
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88-pixel optical flow sensors aimed in the forward-left, 
forward and forward-right directions were able to trig-
ger sharp execution of fixed-sized turns based on the 
difference in optical flow between the sensors. In 2012, 
vision-based hover-in-place via omnidirectional optical 
flow sensors was demonstrated with an 18-cm-wide 
coaxial helicopter. In 2010, a ring of eight vision chips 
acquiring a total of 512 rectangular pixels (half hor-
izontal and half vertical) grabbed eight optical flow 
measurements around the yaw-plane that were used 
to estimate position based on a model of global optical 
flow processing neurons found in the blowfly. A few 
years later, a 250-pixel setup enabled similar behav-
ior—in an implementation weighing only 3 grams that 
included the eight vision chips, optics, interconnects 
and an 8-bit microcontroller running at 60 MOPS. 

As these examples demonstrate, useful vision-based 
flight control can be performed with integrated visual 
circuits involving sensors with hundreds or thousands 
instead of millions of pixels—and at data throughputs 
many orders of magnitude smaller than the TeraOPS 
levels of conventional UAS vision systems that require 
sophisticated GPUs. In the work we briefly surveyed 
above, no GPS, motion capture, external  computation 
or position systems were used. We speculate that with 
the added front-end processing provided by optical 
encoders—again, biospeculative optical preprocessing 
achieved by insect eyes—more advanced behaviors may 
be supported by these low-SWaP systems. 

When less is more
The psychologist William James wrote that “the art 
of being wise is the art of knowing what to overlook.” 
Insect vision embodies this philosophy. To close this 
article, we offer some examples of what the fly has 
“learned to overlook”—with lessons for those design-
ing machine vision systems:

Rely less on more distortable information. Insects 
see in the UV, which provides greater image contrast 
and is less vulnerable to environmental and sensor 
thermal noise than the IR.

Capture more multidimensional information with 
fewer pixels. Insects sample sparsely and leverage 

polarization, which enables greater higher-level 
inferences.

Encode sensor data to capture more information. 
The seemingly random domains of corneal nano-
structures could spatially disperse data and provide 
the capacity to collect, filter, process and map more 
visual data.

Reduce computational complexity. Insects leverage 
shallow computation and feed-forward algorithms to 
make rapid decisions.

Do not assume more is better. Coarse, high-frame-rate 
image processing offers robustness in variable natural 
environments. OPN

Luat T. Vuong (luatv@ucr.edu) is with the University of 
California Riverside, Riverside, CA, USA. Doekele G. Stavenga 
is with the University of Groningen, Netherlands. Geoffrey L. 
Barrows is with Centeye in Washington, DC, USA.

The psychologist William James wrote that “the art of being wise 
is the art of knowing what to overlook.” Insect vision embodies 
this philosophy.

For complete references and resources, go online: 
optica-opn.org/link/1123-insect-vision.
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