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Tuning Optical Cavities with  
Liquid-Crystalline Networks

M etal-insulator-metal (MIM) Fabry-Pérot 
optical cavities find a wide range of appli-

cations in optics, including perfect absorbers1 
and color filters.2 The growing need for novel 
sensing, imaging and display applications has 
prompted interest in dynamically tunable Fabry-
Pérot cavities that incorporate an active dielectric 
layer. However, controlling optical resonances in 
real time using tunable materials poses a signifi-
cant engineering challenge. Current approaches 
that rely on refractive-index modulation suffer 
from low dynamic tunability, high losses and 
limited spectral ranges and require liquid and 
hazardous materials for operation.

In recent work, we showed how to dynami-
cally tune Fabry-Pérot resonances without the 
need for liquids by embedding a nematic liquid-
crystalline network (LCN) as the active layer of 
a MIM cavity.3 We prepared optical microcavi-
ties by incorporating a polymer network with 
liquid-crystalline order between aluminum 
(Al) mirrors. The liquid-crystalline network is 
formed by molecules in the nematic mesophase 
(like those found in liquid-crystal displays) 

that are “frozen” into a polymer network by 
cross-linking.

By thermally inducing mechanical adapta-
tions in the nematic polymer network, we can 
reversibly change the resonant reflectance of 
these Al–LCN–Al optical cavities. The tuning 
mechanism exploits fully reversible temper-
ature-induced mechanical shape adaptations 
in the cross-linked polymer network.4,5 We 
demonstrated reversible and linear dynamic 
tuning of the resonant wavelength over 150 
cycles of thermo-mechanical actuation and 
relaxation. We also showed control over opti-
cal resonances with sub-nanometer precision 
over 100 cycles.

In particular, we obtained a large modula-
tion of reflectance  in a several-micrometer-thick 
cavities due to the high optical transparency of 
the LCN. The active microcavities exhibited a 
large reversible and continuous spectral tun-
ing across the entire visible and near-infrared 
spectral ranges, reaching wavelength shifts of 
up to 40 nm and absolute modulation efficien-
cies up to 79%. OPN

Top left: Resonant reflectance obtained for different temperatures and corresponding thicknesses of LCN layer. Bottom 
left: Mechanism of tuning of resonant optical properties in optical Fabry-Pérot cavity with embedded LCN layer, show-
ing the molecular structure and thermally induced changes in the molecular order and thickness. Top right: Tuning of 
a selected resonance during 150 thermoelastic cycles. Bottom right: Cavity resonance shifts obtained at different set 
temperatures during 100 cycles. Background colors in charts reflect accompanying temperature scale.
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