
Quantum Mechanical Computers 
By Richard P. Feynman 

Introduction 

T his work is a part of an effort to 
analyze the physical l imitations 
of computers due to the laws of 

physics. For example, Bennett 1 has 
made a careful study of the free energy 
dissipation that must accompany com­
putation. He found it to be virtually 
zero. He suggested to me the question 
of the l imitations due to quantum me­
chanics and the uncertainty pr incip le. I 
have found that, aside from the obvious 
l imitation to size if the work ing parts 
are to be made of atoms, there is no 
fundamental l imit f rom these sources 
either. 

We are here consider ing ideal ma­
chines; the effects of smal l imperfec­
tions wi l l be considered later. This study 
is one of pr incip le; our a im is to exhibit 
some Hami l tonian for a system which 
could serve as a computer. We are not 
concerned with whether we have the 
most efficient system, nor how we 
could best implement it. 

Since the laws of quantum physics 
are reversible in t ime, we shall have to 
cons ider compu t i ng engines w h i c h 
obey such reversible laws. This prob­
lem already occurred to Bennett 1 , and 
to Fredkin and Toffoli 2, and a great deal 
of thought has been given to it. Since it 
may not be famil iar to you here, I shall 
review this, and in doing so, take the 
opportunity to review, very briefly, the 
conclusions of Bennett 2 , for we shall 
conf i rm them all when we analyze our 
quantum system. 

It is a result of computer science that 
a universal computer can be made by a 
suitably complex network of intercon­
nected primit ive elements. Fo l lowing 
the usual classical analysis we can imag­
ine the interconnections to be ideal 
wires carrying one of two standard volt­
ages representing the local 1 and 0. We 
can take the primit ive elements to be 
just two, NOT and A N D (actually just 
the one element N A N D = N O T A N D 
suffices, for if one input is set at 1 the 
output is the NOT of the other input). 
They are symbolized in Fig. 1, with the 
logical values resulting on the outgoing 
wires, result ing f rom different com­
binations of input wires. 

F rom a logical point of view, we must 
consider the wires in detail, for in other 
systems, and our quantum system in 
particular, we may not have wires as 

such. We see we really have two more 
logical primit ives, F A N OUT when two 
wires are connected to one, and E X ­
C H A N G E , when wires are crossed. In 
the usual computer the N O T and N A N D 
primit ives are implemented by transis­
tors, possibly as in Fig. 2. 

What is the m in imum free energy that 
must be expended to operate an ideal 
computer made of such pr imit ives? 
Since, for example, when the A N D op­
erates the output l ine, c´ is being deter­
mined to be one of two values no matter 
what it was before the entropy change is 
ln(2) units. This represents a heat gen­
eration of kT ln(2) at temperature T. For 
many years it was thought that this rep­
resented an absolute m i n i m u m to the 
quantity of heat per pr imit ive step that 
had to be dissipated in making a cal­
culat ion. 

The question is academic at this t ime. 
In actual machines we are quite con­
cerned with the heat dissipation ques­
t ion, but the transistor system used ac­
tua l l y d iss ipa tes about 1010kT! As 
Bennett 3 has pointed out, this arises 
because to change a wire's voltage we 
dump it to ground through a resistance; 
and to bu i ld it up again we feed charge, 
again through a resistance, to the wire. 
It cou ld be greatly reduced if energy 
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cou ld be stored in an inductance, or 
other reactive element. 

However, it is apparently very diffi­
cult to make inductive elements on si l i­
con wafers with present techniques. 
Even Nature, in her D N A copying ma­
chine, dissipates about 100 kT per bit 
copied. Be ing, at present, so very far 
f rom this kT ln(2) figure, it seems ridic­
ulous to argue that even this is too high 
and the m in imum is really essentially 
zero. But , we are going to be even more 
r idiculous later and consider bits writ­
ten on one atom instead of the present 
1 0 " atoms. Such nonsense is very en­
tertaining to professors l ike me. I hope 
you wi l l f ind it interesting and enter­
taining also. 

What Bennett pointed out was that 
this former l imit was wrong because it 
is not necessary to use irreversible 
primit ives. Calculat ions can be done 
with reversible machines contain ing 
only reversible primitives. If this is done 
the m in imum free energy required is 
independent of the complexity or num­
ber of logical steps in the calculat ion. If 
anything, it is kT per bit of the output 
answer. 

But even this, wh ich might be consid­
ered the free energy needed to clear the 
computer for further use, might also be 
considered as part of what you are go­
ing to do with the answer—the informa­
tion in the result if you transmit it to 
another point . This is a l im i t on ly 
achieved ideally if you compute with a 
reversible computer at inf in i tesimal 
speed. 

Computation with a 
reversible machine 

We wi l l now describe three reversible 
primit ives that cou ld be used to make a 
universal machine (Toffoli 4). The first is 
the N O T which evidently loses no in­
formation, and is reversible, being re­
versed by acting again with NOT. Be­
cause the convent ional symbol is not 
symmetr ical we shall use an X on the 
wire instead (see Fig. 3a). 

Next is what we shall cal l the C O N ­
T R O L L E D N O T (see F ig. 3b). There are 
two entering l ines, a and b and two 
exiting l ines, a ´and b´. The a ´ is always 
the same as a, wh ich is the contro l l ine. 
If the control is activated a = 1 then the 
out b´ is the N O T of b. Otherwise b is 
unchanged, b´ = b. The table of values 
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Fig. 1. Primitive elements. 

for input and output is given in Fig. 3. 
The action is reversed by simply repeat­
ing it. 

The quantity b´ is really a symmetr ic 
function of a and b cal led X O R , the 
exclusive or; a or b but not both. It is 
l ikewise the sum modulo two of a and b, 
and can be used to compare a and b, 
giving a 1 as a signal that they are differ­
ent. Please notice that this funct ion 
X O R is itself not reversible. For exam­
ple, if the value is zero we cannot tell 
whether it came from (a,b) = (0,0) or 
from (1,1) but we keep the other l ine 
a´=a to resolve the ambiguity. 

We wi l l represent the C O N T R O L L E D 
NOT by putting a 0 on the control wire, 
connected with a vertical l ine to an X on 
the wire which is control led. 

This element can also supply us with 
FAN OUT, for if b = 0 we see that a is 
copied onto l ine b´. This C O P Y funct ion 
wi l l be important later on. It also sup­
plies us with E X C H A N G E , for three of 
them used successively on a pair of 
lines, but with alternate choice for con­
trol l ine, accomplishes an exchange of 
the information on the lines (Fig. 3b). 

It turns out that combinat ions of just 
these two elements alone are insuffi­
cient to accompl ish arbitrary logical 
funct ions. Some element i nvo l v ing 
three lines is necessary. We have chosen 
what we can cal l the C O N T R O L L E D 
C O N T R O L L E D NOT. Here (see Fig. 3c) 
we have two control lines a,b, wh ich 
appear unchanged in the output and 
which change the third l ine c to N O T c 
only if both lines are activated (a = 1 
and b = 1). Otherwise c ´ = c. If the third 
line input c is set to 0, then evidently it 
becomes 1 (c´ = 1) only if both a and b 
are 1 and therefore supplies us with the 
A N D function (see Table 1). 

Three combinations for (a,b), namely 
(0,0), 0,1), and (1,0) all give the same 
value, 0, to the A N D (a,b) funct ion so 
the ambiguity requires two bits to re­
solve it. These are kept in the l ines a,b in 
the output so the function can be re­
versed (by itself, in fact). The A N D func­
tion is the carry bit for the sum of a and 
b. 

From these elements it is known that 
any logical c i rcui t can be put together 
by using them in combinat ion, and in 
fact, computer science shows that a uni­
versal computer can be made. We wi l l 
i l lustrate this by a little example. First, 
of course, as you see in Fig. 4, we can 
make an adder, by first using the C O N ­
T R O L L E D C O N T R O L L E D N O T and 

Fig. 2. Transistor circuits 
NOT and NAND. 

for 

then the C O N T R O L L E D N O T in succes­
sion, to produce from a and b and 0, as 
input l ines, the original a on one l ine, 
the sum on the second l ine and the 
carry on the third. 

A more elaborate circui t is a full 
adder, (see Fig. 5), wh ich takes a carry, 
c, (from some previous addition), and 
adds it to the two l ines a and b and has 

an addit ional l ine, d, with a 0 input. It 
requires four pr imit ive elements to be 
put together. Besides this total sum, the 
total of the three, a,b, and c and the 
carry, we obtain on the other two l ines, 
two pieces of information. One is the a 
that we started with, and the other is 
some intermediary quantity that we cal­
culated on route. 

This is typical of these reversible sys­
tems, they produce not only what you 
want in output, but a lso a cer ta in 
amount of garbage. In this part icular 
case, and as it turns out in al l cases, the 
garbage can be arranged to be, in fact, 
just the input, if we wou ld just add the 
extra C O N T R O L L E D N O T on the first 
two lines, as indicated by the dotted 
lines in F ig . 5, we see that the garbage 
wou ld become a and b, wh ich were the 
inputs of at least two of the lines. (We 
know this circuit can be simpli f ied but 
we do it this way for il lustrative pur­
poses.) 

In this way, we can by various com­
binations produce a general logic unit 
that transforms n bits to n bits in a 
reversible manner. If the prob lem you 
are trying to do is itself reversible, then 
there might be no extra garbage, but in 
general , there are some extra l ines 
needed to store up the informat ion 
which you would need to be able to 
reverse the operation. In other words, 
we can make any funct ion that the con­
ventional system can, plus garbage. The 
garbage contains the information you 
need to reverse the process. 

And how m u c h garbage? It turns out 
in general, that if the output data that 
you're looking for has k bits, then start­
ing with an input and k bits containing 
0, we can produce, as a result, just the 
input and the output and no further 
garbage. This is reversible because 
knowing the output and the input, per­
mits you of course, to undo everything. 

Fig. 3. Reversible primitives. 
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Fig. 4. Adder. 

This proposit ion is always reversible. 
The argument for this is i l lustrated in 
Fig. 6. 

Suppose we began with a machine M, 
which, starting with an input, and some 
large number of 0's, produces the de­
sired output plus a certain amount of 
extra data which we cal l garbage. N o w 
we've seen that the copy operat ion 
which can be done by a sequence of 
C O N T R O L L E D NOT's is possible, so if 
we have original ly an empty register, 
with the k bits ready for the output, we 
can, after the processor M has operated, 
copy the output f rom the M onto this 
new register. 

After that, we can bu i ld the opposite 
machine, the M in reverse, the reverse 
machine, which wou ld take this output 
of M and garbage and turn it into the 
input and 0's. Thus, seen as an overal l 
machine, we wou ld have started with 
the k 0's of the register for the output, 
and the input, and ended up with those 
k 0's occupied by the output data, and 
repeat the input data as a final product. 
The number of 0's that was original ly 
needed in the M machine in order to 
hold the garbage, is restored again to 0, 
and can be considered as internal wires 
inside the new complete machine (M, M 
and copy). 

Overal l , then, we have accompl ished 
what we set out to do, and therefore 
garbage need never be any greater than 
a repetition of the input data. 

A quantum mechanical 
computer 

We now go on to consider how such a 
computer can also be built using the 
laws of quantum mechanics. We are 
going to write a Hami l ton ian, for a sys­
tem of interacting parts, wh ich wi l l be­
have in the same way as a large system 
in serving as a universal computer. Of 
course the large system also obeys 
quantum mechanics, but it is in interac­
tion with the heat baths and other things 
that could make it effectively irrevers­
ible. 

What we would l ike to do is make the 

computer as smal l and as simple as 
possible. Our Hami l ton ian w i l l describe 
in detail al l the internal comput ing ac­
tions, but not of course, those interac­
tions with the exterior involved in en­
tering the input (preparing the init ial 
state) and reading the output. 

H o w smal l can such a computer be? 
H o w smal l , for instance, can a number 
be? Of course a number can be repre­
sented by bits of 1's and 0's. What we're 
going to do is imagine that we have two-
state systems, wh ich we wi l l cal l "at­
oms. " An n bit number is then repre­
sented by a state of a "register;" a set of 
n two-state systems. 

Depending upon whether or not each 
atom is in one or another of its two 
states, wh ich we cal l 11> and 1 0 > , we 
can of course, represent any number. 
And the number can be read out of such 
a register by determining, or measur­
ing, in wh ich state each of the atoms are 
at a given moment. Therefore one bit 
w i l l be represented by a single atom 
being in one of two states, the states we 
wi l l cal l 11> and 1 0 > . 

What we wi l l have to do then can be 
understood by consider ing an example; 
the example of a C O N T R O L L E D C O N ­
T R O L L E D NOT. Let G be some sort of 
an operation on three atoms a, b and c, 
which converts the original state of a,b, 
and c into a new appropriate state, 
a´,b´,c´, so that the connect ion between 
a´,b´ and c´ and a,b,c, are just what we 
would have expected if a,b, and c repre­
sented wires, and the a´,b´ and c ´ were 
the output wires of a C O N T R O L L E D 
C O N T R O L L E D NOT. 

It must be appreciated here, that at 
the moment we are not trying to move 
the data f rom one posit ion to another, 
we are just going to change it. Unl ike 
the situation in the actual wi red com­
puter in which the voltages on one wire 
then go over to voltages on another, 
what we're specif ically making is some­
thing simpler, that the three atoms are 
in some part icular state, and that an 
operation is performed, wh ich changes 
the state to new values, a´,b´,c´. 

What we wou ld have then is that the 

Fig. 5. Full adder. 

s ta te , i n the m a t h e m a t i c a l f o r m 
\a´,b´,c´> is simply some operation G 
operating on \a,b,c>. In quantum me­
chanics, state changing operators are 
l inear operators, and so we' l l suppose 
that G is linear. Therefore, G is a matrix, 
and the matrix elements of G, Ga´,b´,c´,a,b,c 

are al l 0 except those in the fo l lowing 
table, wh ich are of course 1. 

T A B L E 1 
This table is the same table that repre­

sents the truth value table for the C O N ­
T R O L L E D C O N T R O L L E D NOT. It is ap­
parent that the operation is reversible, 
and that can be represented by saying 
that G*G = 1, where the * means H e r m i ¬
tian adjoint. That is to say G is a unitary 
matrix. (In fact G is also a real matrix G* 
= G, but that's only a special case.) To 
be more specific, we're going to write 
Aab,c for this special G. We shall use the 
same matrix A with different numbers 
of subscripts to represent the other 
pr imit ive elements. 

To take a simple example, the NOT, 
which would be represented by Aa is the 
simple matrix 

This is a 2 X 2 matrix and can be repre­
sented in many ways, in different nota­
tions, but the part icular one we wi l l use 
to define these is by the method of cre­
ation and annihi lat ion operators. Con­
sider operating in this case, on a single 
l ine a. In order to save alphabets, let us 
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cal l a the matrix 

which annihilates the 1 on atom a and 
converts it to 0 ; a is an operator wh ich 
converts the state I1> to I‌0>. But, if the 
state of the atom were original ly I 0 > , 
the operator a produces the number 0 . 
That is, it doesn't change the state, it 
simply produces the numer ical value 
zero when operating on that state. The 
conjugate of this thing, of course, is: 

which creates, in the sense that operat­
ing on the 0 state, it turns it to the 1 
state. In other words, it moves f r om ‌ ‌‌‌‌‌‌I‌‌0> 
to ‌‌‌‌‌‌I1>. When operating on the ‌‌‌‌‌‌I1> state, 
there is no further state above that that 
you can create, and therefore it gives it 
the number zero. Every other operator 
2 X 2 matrix can be represented in 
terms of these a and a*. For example, 
the product a*a is equal to the matrix 

wh ich you might ca l l Na, It is 1 when the 
state is ‌‌‌‌‌‌I1> and 0 when the state is I 0 > . 
It gives the number that the state of the 
atom represents. Likewise the product 

is 1 — Na, and gives 0 for the up-state and 

1 for the down-state. We' l l use 1 to 
represent the diagonal matrix, 

As a consequence of al l this, aa* + 
a*a = 1. 

It is evident then that our matrix for 
NOT, the operator that produces NOT, 
is Aa = a + a* and further of course, 
that's reversible, Aa*Aa = 1, Aa is unitary. 

In the same way the matrix Aa,b for the 
C O N T R O L L E D N O T can be worked 
out. If you look at the table of values for 
C O N T R O L L E D N O T you see that it can 
be written this way: 

In the first term, the a*a selects the 
condi t ion that the line a = 1 in which 
case we want b + b* the N O T to apply to 
b. The second term selects the condi­
t ion that the line a is 0 , in wh ich case we 
want nothing to happen to b and the 
unit matrix on the operators of b is 
impl ied. This can also be written as 1 + 
a*a (b + b*- 1), the 1 representing al l 
the lines coming through directly, but 
in the case that a is 1, we wou ld l ike to 
correct that by putting in a N O T instead 
of leaving the line b unchanged. 

The matrix for the C O N T R O L L E D 
C O N T R O L L E D N O T is: 

as perhaps, you may be able to see. 
The next question is what the matrix 

is for a general logic unit wh ich consists 
of a sequence of these. As an example, 
we' l l study the case of the ful l adder 
which we described before (see Fig. 5). 
Now we' l l have, in the general case, 
four wires represented by a,b,c and d; 

we don't necessarily have to have d as 0 
in al l cases, and we wou ld l ike to de­
scribe how the object operates in gen­
eral (if d is changed to 1 d is changed to 
its NOT). It produces new numbers a , 
b , c and d , and we could imagine with 
our system that there are four atoms 
l a b e l e d a,b,c,d in a state l abe led 
Ia,b,c,d> and that a matrix M operates 
which changes these same four atoms 
so that they appear to be in the state 
Ia ,b ,c ,d > wh ich is appropriate for 
this logic unit. That is, if IΨIN> repre­
sents the incoming state of the four bits 
M is a matrix wh ich generates an outgo­
ing state IΨOUT> = MIΨpIN> for the four 
bits. 

For example, if the input state were 
the state I 1 , 0 , 1 , 0 > then, as we know, the 
output state should be I 1 , 0 , 0 , 1 > ; the 
first two a',b' should be 1,0 for those two 
first lines come straight through, and 
the last two c',d' should be 0,1 because 
that represents the sum and carry of the 
first three, a, b, c, bits in the first input, 
as d = 0 . Now the matrix M for the adder 
can easily be seen as the result of five 
successive pr imi t ive operations, and 
therefore becomes the matrix product 
of the five successive matrices repre­
senting these pr imit ive objects. 

The first, wh ich is the one written 
farthest to the right, is Aab,d for that 
represents the C O N T R O L L E D C O N ­
T R O L L E D N O T in which a and b are the 
C O N T R O L lines, and the N O T appears 
on l ine d. By looking at the diagram in 
Fig. 5 we can immediately see what the 
remaining factors in the sequence rep­
resent. The last factor, for example, Aa,b 

means that there's a C O N T R O L L E D 
N O T with a C O N T R O L on line a and 
N O T on line b. This matrix wi l l have the 
unitary property M*M = 1 since al l of 
the A's out of wh ich it is a product are 
unitary. That is to say M is a reversal 
operation, and M* is its inverse. 

Our general prob lem, then, is this. 
Let A 1 , A 2 , A3, ... Ak be the succession of 
operat ions wanted, in some log ica l 
unit, to operate on n lines. The 2nX2n 

matrix M needed to accompl ish the 
same goal is a product Ak...A3A2A1, where 
each A is a simple matrix. H o w can we 
generate this M in a physical way if we 
know how to make the s impler ele­
ments? 

In general, in quantum mechanics, 
the outgoing state at t ime t, is eiHtψIN, 
where ψIN is the input state, for a system 
with Hami l ton ian H. To try to find, for a 
given special t ime t, the Hami l ton ian 
which wi l l produce M = eiHt when M is 
such a product of non-commut ing ma-Fig. 6. Clearing garbage. 
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trices, f rom some simple property of 
the matrices themselves, appears to be 
very difficult. 

We realize however, that at any par­
t icular t ime, if we expand the eiHt out (as 
1 + iHt - H2t2/2-..) we' l l find the oper­
ator H operating an innumerable arbi­
trary number of times, once, twice, 
three times and so forth, and the total 
state is generated by a superposit ion of 
these possibilit ies. This suggests that we 
can solve this problem of the compo­
sition of these A's in the fo l lowing way. 

We add to the n atoms, wh ich are in 
our register, an entirely new set of k + 1 
atoms, w h i c h w e ' l l ca l l " p r o g r a m 
counter sites." Let us cal l qi and qi* the 
annihi lat ion and creation operators for 
the program site i for i = 0 to k. A good 
thing to think of, as an example, is an 
electron moving f rom one empty site to 
another. If the site i is occupied by the 
electron, its state is ‌‌‌‌‌‌‌‌‌‌‌I1>, whi le if the site 
is empty, its state is ‌‌‌‌‌‌‌‌‌‌‌I0>. 

We write, as our Hami l tonian: 

The first thing to notice is that if a l l 
the program sites are unoccupied, that 
is al l the program atoms are init ial ly in 
the state 0, nothing happens because 
every term in the Hami l ton ian starts 
with an annihi lat ion operator and it 
gives 0 therefore. 

The second thing we notice is that if 
only one or another of the program sites 
is occupied (in state ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ I 1 > ) , and the rest 
are not (state I0>), then this is always 
true. In fact the number of program 
sites that are in state ‌‌‌‌‌‌‌‌‌‌‌I1> is a conserved 
quantity. We wi l l suppose that in the 
operation of this computer, either no 
sites are occupied (in wh ich case noth­
ing happens) or just one site is occu­
pied. Two or more program sites are 
never both occupied dur ing normal op­
eration. 

Let us start with an init ial state where 
site 0 is occupied, is in the ‌‌‌‌‌‌‌‌‌‌‌I1> state, and 
al l the others are empty, I0> state. If 
later, at some time, the final site k is 
found to be in the ‌‌‌‌‌‌‌‌‌‌‌I1> state, (and there­
fore al l the others in I0>) then, we 
c la im, the n register has been mult i ­
p l ied by the matrix M , wh ich is Ak ... 
A2A1 as desired. 

Let me explain how this works. Sup­
pose that the register starts in any init ial 
state, ψ i n , and that the site, 0, of the 

program counter is occupied. Then the 
only term in the entire Hami l ton ian 
that can first operate, as the Hamil to­
nian operates in successive t imes, is the 
first term, q1 * q0A1. The q0 w i l l change 
site number 0 to an unoccup ied site, 
whi le q1 * w i l l change the site number 0 
to an occup ied site. Thus the term 
q1 * q0 is a term, wh ich simply moves 
the occupied site f rom the locat ion 0 to 
the location 1. But this is mul t ip l ied by 
the matrix A1 wh ich operates only on 
the n register atoms, and therefore mul ­
tiplies the init ial state of the n register 
atoms by A1. 

Now, if the Hami l ton ian happens to 
operate a second t ime, this first term 
w i l l produce nothing because q0 pro­
duces 0 on the number 0 site because it 
is now unoccupied. The term wh ich can 
opera te n o w is the s e c o n d t e r m , 
q2 * q1A2 for that can move the occup ied 
point, wh ich I shall cal l a "cursor . " The 
cursor can move f rom site 1 to site 2 but 
the matrix A2 now operates on the regis­
ter, therefore the register has now got 
the matrix A 2 A 1 operating on it. 

So, looking at the first l ine of the 
Hami l ton ian, if that is al l there was to it, 
as the H a m i l t o n i a n o p e r a t e s i n 
successive orders, the cursor wou ld 
move successively f rom 0 to k, and you 
wou ld acquire, one after the other, op­
erating on the n register atoms, the 
matrices, A, in the order that we wou ld 
l ike to construct the total M. 

However, a Hami l ton ian must be her¬
mit ian, and therefore the complex con­
jugate of al l these operators must be 
present. Suppose that at a given stage, 
we have gotten the cursor on site num­
ber 2, and we have the matrix A2A1 

operating on the register. N o w the q2 

which intends to move that occupat ion 
to a new posit ion, needn't come f rom 
the first l ine, but may have come f rom 
the second l ine. It may have come, in 
fact, f rom q1 * q2A2 * wh ich wou ld move 
the cursor back f rom the posit ion 2 to 
the posit ion 1. 

But note that when this happens, the 
operator A2 * operates on the register, 
and therefore the total operator on the 
register is A2 *A2A1 

in this case. But 
A2 * A2 is 1 and therefore the operator is 
just A1. Thus we see that when the 
cursor is returned to the posit ion 1, the 
net result is that only the operator A1 

has really operated on the register. Thus 
it is that as the various terms of the 
Hami l ton ian move the cursor forwards 
and backwards, the A's accumulate, or 
are reduced out again. 

At any stage, for example, if the 
cursor were up to the j site, the matrices 
f rom A1 to Aj have operated in succes­

sion on the n register. It does not matter 
whether or not the cursor on the j site 
has arr ived there, by going direct ly 
f rom 0 to j, or going further and return­
ing, or going back and forth in any 
pattern whatsoever, as long as it finally 
arr ived at the state j. 

Therefore it is true, that if the cursor 
is found at the site k, we have the net 
result for the n register atoms that the 
matrix M has operated on their init ial 
state as we desired. 

H o w then cou ld we operate this com­
puter? We begin by putting the input 
bits onto the register, and by putting the 
cursor to occupy the site 0. We then 
check at the site k, say, by scattering 
electrons, that the site k is empty, or that 
the site k has a cursor. The moment we 
find the cursor at site k we remove the 
cursor so that it cannot return down the 
program l ine, and then we know that 
the register contains the output data. 
We can then measure it at our leisure. 
Of course, there are external things in­
volved in making the measurements, 
and determining al l of this, wh ich are 
not part of our computer. Surely a com­
puter has eventually to be in interaction 
w i t h the ex te rna l w o r l d , bo th for 
putt ing data in and for taking it out. 

Mathematical ly it turns out that the 
propagation of the cursor up and down 
this program l ine is exactly the same as 
it wou ld be if the operators A were not 
in the Hami l ton ian. In other words, it 
represents just the waves which are fa­
mi l iar f rom the propagation of the tight 
b inding electrons or spin waves in one 
dimension, and are very wel l known. 
There are waves that travel up and 
down the l ine and you can have packets 
of waves and so forth. 

We cou ld improve the action of this 
computer and make it into a ball ist ic 
action in the fol lowing way. By making 
a l ine of sites in addit ion to the ones 
inside, that we are actually using for 
comput ing, a l ine of say, many sites, 
both before and after. It's just as though 
we had values of the index i for qi wh ich 
are less than 0 and greater than k, each 
of wh ich has no matrix A, just a 1 mult i­
plying there. Then we'd have a longer 
spin chain, and we cou ld have started, 
instead of putt ing a cursor exactly at the 
beginning site 0, by putting the cursor 
with different amplitudes on different 
sites representing an init ial incoming 
spin wave, a wide packet of nearly defi­
nite momentum. 

T h i s s p i n wave w o u l d t hen go 
through the entire computer in a ballis­
tic fashion and out the other end into 
the outside tail that we have added to 
the l ine of program sites, and there it 
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would be easier to determine if it is 
present and to steer it away to some 
other place, and to capture the cursor. 
Thus, the logical unit can act in a ballis­
tic way. 

This is the essential point and indi­
cates, at least to a computer scientist, 
that we cou ld make a universal com­
puter, because he knows if we can make 
any logical unit we can make a univer­
sal computer. That this cou ld represent 
a universal computer for wh ich compo­
sition of elements and branching can be 
done, is not entirely obvious unless you 
have some experience, but I wi l l discuss 
that to some further extent later. 

Imperfections and 
irreversible free energy loss 

There are, however, a number of 
questions that we wou ld l ike to discuss 
in more detail such as the question of 
imperfections. 

There are many sources of imperfec­
tions in this machine, but the first one 
we would l ike to consider is the pos­
sibi l i ty that the coef f ic ients in the 
couplings, along the program l ine, are 
not exactly equal. The line is so long 
that in a real calculat ion little irregular­
ities would produce a smal l probabil i ty 
of scattering, and the waves wou ld not 
travel exactly ballistically, but wou ld go 
back and forth. 

If the system, for example, is built so 
that these sites are built on a substrate 
of ordinary physical atoms, then the 
thermal v ibra t ions of these atoms 
would change the coupl ings a little bit 
and generate imperfections. (We should 
even need such noise for with smal l 
fixed imperfections there are shal low 
trapping regions where the cursor may 
get caught.) Suppose then, that there is 
a certain probability, say p per step of 
calculat ion (that is, per step of cursor 
mot ion, i -- i + 1) for scattering the 
cursor momentum unti l it is random­
ized (1/p is the transport mean free 
path). We wi l l suppose that the p is fairly 
small . 

Then in a very long calculat ion, it 
might take a very long time for the wave 
to make its way out the other end, once 
started at the beginning—because it has 
to go back and forth so many times due 
to the scattering. What one then cou ld 
do, would be to pul l the cursor along 
the program line with an external force. 
If the cursor is for example, an electron 
moving from one vacant site to another, 
this would be just l ike an electric field 
trying to pul l the electron along a wire, 
the resistance of wh ich is generated by 

the imperfect ion or the probabil i ty of 
scattering. Under these circumstances 
we can calculate how much energy w i l l 
be expended by this external force. 

This analysis can be made very sim­
ply: it is an almost classical analysis of 
an electron with a mean free path. Ev­
ery t ime the cursor is scattered, I'm 
going to suppose it is randomly scat­
tered forward and backward. In order 
for the machine to operate, of course, it 
must be moving forward at a higher 
probabil i ty than it is moving backward. 
When a scattering occurs therefore, the 
loss in entropy is the logari thm of the 
probabil i ty that the cursor is, moving 
forward, divided by the probabil i ty the 
cursor was moving backward. 

This can be approximated by (the 
probabil i ty forward — the probabil i ty 
backward)/(the probabil i ty forward + 
the probabil i ty backward). That was the 
entropy lost per scattering. More inter­
est ing in the ent ropy lost per net 
calculat ional step, wh ich is of course, 
simply p times that number. We can 
rewrite the entropy cost per calcula­
tional step as: 

p vD/VR 

where VD is the drift velocity of the 
cursor and vR its random velocity. 

Or if you l ike, it is p times the mini ­
m u m time that the calculat ion cou ld be 
done in , (that is if al l the steps were 
always in the forward direct ion), di­
vided by the actual t ime al lowed. 

The free energy loss per step then, is 
kTXpX the m in imum time that the 
calculat ion cou ld be done, divided by 
the actual t ime that you al low yourself 
to do it. This is a formula that was first 
derived by Bennett. The factor p is a 
coasting factor, to represent situations 
in which not every site scatters the 
cursor randomly, but it has only a smal l 
probabil i ty to be thus scattered. 

It w i l l be appreciated that the energy 
loss per step is not kT but is that divided 
by two factors. One, (1/p), measures 
how perfectly you can bu i ld the ma­
chine and the other is proport ional to 
the length of t ime that you take to do the 
calculat ion. It is very much l ike a Car-
not engine, in wh ich in order to obtain 
reversibil i ty, one must operate very 
slowly. For the ideal machine where p is 
0, or where you al low an infinite t ime, 
the mean energy loss can be 0. 

The uncertainty pr inc ip le, wh ich usu­
ally relates some energy and time un­
certainty, is not directly a l imitat ion. 
What we have in our computer is a 
device for making a computat ion, but 
the t ime of arrival of the cursor and the 

measurement of the output register at 
the other end (in other words, the time 
it takes in which to complete the cal­
culation), is not a definite time. It's a 
question of probabil i t ies, and so there is 
a considerable uncertainty in the t ime 
at wh ich a calculat ion wi l l be done. 

There is no loss associated with the 
uncertainty of cursor energy; at least no 
loss depending on the number of calcu­
lational steps. Of course, if you want to 
do a ball ist ic calculat ion on a perfect 
machine, some energy wou ld have to be 
put into the original wave, but that en­
ergy, of course, can be removed f rom 
the final wave when it comes out of the 
tail of the program line. A l l questions 
associated with the uncertainty of oper­
ators and the irreversibil i ty of measure­
ments are associated with the input and 
output functions. 

No further l imitations are generated 
by the quantum nature of the computer 
per se; nothing that is proport ional to 
the number of computat ional steps. 

In a machine such as this, there are 
very many other problems, due to im­
perfections. For example, in the regis­
ters for holding the data, there wi l l be 
problems of cross-talk, interactions be­
tween one atom and another in that 
register, or interaction of the atoms in 
that register directly with things that are 
happening along the program line, that 
we didn't exactly bargain for. In other 
words, there may be smal l terms in the 
Hami l ton ian besides the ones we've 
written. 

Unti l we propose a complete imple­
mentation of this, it is very difficult to 
analyze. At least some of these problems 
can be remedied in the usual way by 
techniques such as er ror correct ing 
codes, and so forth, that have been stud­
ied in normal computers. But unti l we 
find a specific implementat ion for this 
computer, I do not know how to pro­
ceed to analyze these effects. However, 
it appears that they wou ld be very im­
portant, in pract ice. This computer 
seems to be very delicate and these 
imperfections may produce consider­
able havoc. 

The time needed to make a step of 
calculat ion depends on the strength or 
the energy of the interactions in the 
terms of the Hami l tonian. If each of the 
terms in the Hami l ton ian is supposed to 
be of the order of 0.1 electron volts, 
then it appears that the time for the 
cursor to make each step, if done in a 
ballistic fashion, is of the order 6X10 - 1 5 

sec. This does not represent an enor­
mous i m p r o v e m e n t , pe rhaps on ly 
about four orders of magnitude over the 
present values of the t ime delays in 
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Fig. 7. Switch. 
transistors, and is not much shorter 
than the very short times possible to 
achieve in many optical systems. 

Simplifying the 
implementation 

We have completed the job we set out 
to do—to find some quantum mechani­
cal Hamiltonian of a system that could 
compute, and that is all that we need 
say. But it is of some interest to deal 
with some questions about simplifying 
the implementation. The Hamiltonian 
that we've written involves terms which 
can involve a special kind of interaction 
between five atoms. For example, three 
of them in the register, for a CON­
TROLLED CONTROLLED NOT and two 
of them as the two adjacent sites in the 
program counter. 

This may be rather complicated to 
arrange. The question is, can we do it 
with simpler parts. It turns out, we can 
indeed. We can do it so that in each 
interaction there are only three atoms. 
We're going to start with new primitive 
elements, instead of the ones we began 
with. We'll have the NOT all right, but 
we have in addition to that simply a 
"switch" (see also Priese5). 

Supposing that we have a term, 
q * c p + r * c * p + its complex conju­
gate in the Hamiltonian (in all cases 

we'll use letters in the earlier part of the 
alphabet for register atoms and in the 
latter part of the alphabet for program 
sites). See Fig. 7. This is a switch in the 
sense that, if c is originally in the I‌1> 
state, a cursor at p will move to q, 
whereas if c is in the I‌0> state, the 
cursor at p will move to r. 

During this operation the controlling 
atom c changes its state. (It is possible 

Fig. 8. CONTROLLED NOT by switches. 
also to write an expression in which the 
control atom does not change its state, 
such as q * c * c p + r * c c * p and its 
complex conjugate but, there is no par­
ticular advantage or disadvantage to 
this, and we will take the simpler form.) 
The complex conjugate reverses this. 

If, however, the cursor is at q and c is 

in the state I‌1> (or cursor at r, c in I‌0>) 
the H gives 0, and the cursor gets re­
flected back. We shall build all our cir­
cuits and choose initial states so that 
this circumstance will not arise in nor­
mal operation, and the ideal ballistic 
mode will work. 

With this switch we can do a number 
of things. For example, we could pro­
duce a CONTROLLED NOT as in Fig. 8. 
The switch a controls the operation. 
Assume the cursor starts at s. If a = 1 
the program cursor is carried along the 
top line, whereas if a = 0 it is carried 
along the bottom line, in either case 
terminating finally in the program site t. 

In these diagrams, horizontal or verti­
cal lines will represent program atoms. 
The switches are represented by diag­
onal lines and in boxes we'll put the 
other matrices that operate on registers 
such as the NOT b. To be specific, the 
Hamiltonian for this little section of a 
CONTROLLED NOT, thinking of it as 

starting at s and ending at t, is given 
below: 

(The c.c. means to add the complex 
conjugate of all the previous terms.) 

Although there seem to be two routes 
here which would possibly produce all 
kinds of complications characteristic of 
quantum mechanics, this is not so. If 
the entire computer system is started in 
a definite state for a by the time the 
cursor reaches 5, the atom a is still in 
some definite state (although possibly 
different from its initial state due to 
previous computer operations on it). 
Thus only one of the two routes is taken. 
The expression may be simplified by 
omitting the sN * tN term and putting 
tN = SN. 
One need not be concerned in that 
case, that one route is longer (two 
cursor sites) than the other (one cursor Fig. 9. One "piece." 
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site) for again there is no interference. 
No scattering is produced in any case by 
the insertion into a chain of coupled 
sites, an extra piece of chain of any 
number of sites with the same mutual 
coupl ing between sites (analogous to 
matching impedances in transmission 
lines). 

To study these things further, we think 
of putting pieces together. A piece (see 
Fig. 9) M might be represented as a 
logical unit of interacting parts in which 
we only represent the first input cursor 
site as SM and the final one at the other 
end as tM. A l l the rest of the program 
sites that are between SM and tM are 
considered internal parts of M, and M 
contains its registers. Only sM and tM are 
sites that may be coupled externally. 

The Hami l tonian for this sub-section 
we' l l cal l HM and we' l l identify SM and tM, 

as the name of the input and output 
program sites by writ ing H M ( S M , T M ) . So 
therefore HM is that part of the Hami l to­
nian representing al l the atoms in the 
box and their external start and termi­
nator sites. 

An especially important and interest­
ing case to consider is when the input 
data (in the regular atoms) comes f rom 
one logical unit, and we wou ld l ike to 

transfer it to another (see Fig. 10). Sup­
pose that we imagine that the box M 
starts with its input register with 0 and 
its output (which may be the same regis­
ter) also with 0. Then we cou ld use it in 
the fol lowing way. We cou ld make a 
program l ine, let's say starting with SM´ 
whose first job is to exchange the data in 
an external register wh ich contains the 
input, with M's input register wh ich at 
the present t ime contains 0's. 

Then the first step in our calculat ion, 
starting, say, at SM', wou ld be to make an 
exchange with the register inside of M. 
That puts zero's into the or iginal input 
register and puts the input where it 
belongs inside the box M. The cursor is 
now at SM. (We have already explained 
how exchange can be made of con­
trol led NOTs.). Then as the program 
goes f rom SM to tM we find the output 
now in the box M. Then the output 
register of M is now cleared as we write 
the results into some new external reg­
ister provided for that purpose, origi­
nally containing 0's. This we do f rom tM 

to tM' by exchanging data in the empty 
external register with the M's output 
register. 

We can now consider connect ing 
such units in different ways. For exam­
ple, the most obvious way is succession. 

Fig. 10. Piece with external input and output. 

18 

Fig. 11. Operations in succession. 

If we want to do first M and then N we 
can connect the terminal side of one to 
the starting side of the other as in Fig. 
11, to produce a new effective operator 
K, and the Hami l ton ian then for HK is 

The general condi t ional , if a = 1 do M, 
but if a = 0 do N, can be made, as in Fig. 
12. For this 

The C O N T R O L L E D N O T is the spe­
c ia l case of this with M = N O T b for 
wh ich H is: 

and N is no operation s*t. 
As another example, we can deal with 

a garbage clearer (previously described 
in Fig. 6) not by making two machines, 
a machine and its inverse, but by using 
the same machine and then sending the 
data back to the machine in the oppo­
site direct ion, using our switch (see Fig. 
13). 

Suppose in this system we have a 
special flag f wh ich is original ly always 
set to 0. We also suppose we have the 
input data in an external register, an 
empty external register available to 
hold the output, and the machine regis­
ters al l empty (contain ing 0's). We 
come on the starting line s. 

The first thing we do is to copy (using 
C O N T R O L L E D NOT's) our external in­
put into M. Then M operates, and the 
cursor goes on the top l ine in our draw­
ing. It copies the output out of M into 
the external output register. M now con¬
tains-garbage. Next it changes f to NOT 
f, comes down on the other l ine of the 
switch, backs out through M c lear ing 
the garbage and uncopies the input 
again. 

When you copy data and do it again, 
you reduce one of the registers to 0, the 
register into which you copied the first 
t ime. After the copying, it goes out 
(since f is now changed) on the other 
l ine where we restore f to 0 and come 
out at t. So between s and t we have a 
new piece of equipment, wh ich has the 
fol lowing properties. 

When it starts, we have, in a register 
cal led IN , the input data. In an external 
register wh ich we cal l OUT, we have 0's. 
There is an internal flag set at 0, and the 
box, M, is empty of al l data. At the 
terminat ion of this, at t, the input regis­
ter sti l l contains the input data, the out-
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put register contains the output of the 
effort of the operator M. M however, is 
sti l l empty, and the flag f is reset to 0. 

Also important in computer pro­
grams is the ability to use the same 
subroutine several times. Of course, 
f rom a logical point of view, that can be 
done by wri t ing that bit of program over 
and over again, each time it is to be 
used, but in a practical computer, it is 
much better if we cou ld bu i ld that sec­
t ion of the computer wh ich does a par­
t icular operation, just once, and use 
that section again and again. 

To show the possibil it ies, here, first 
just suppose we have an operation we 
simply wish to repeat twice in succes­
sion (see Fig. 14). We start at s with the 
flag a in the condi t ion 0, and thus we 
come along the l ine, and the first thing 
that happens is we change the value of 
a. Next we do the operation M. Now, 
because we changed a, instead of com­
ing out at the top l ine where we went in , 
we come out at the bottom l ine, wh ich 
recirculates the p rogram back into 
changing a again, it restores it. 

This time as we go through M, we 
come out and we have the a to fol low on 
the upper l ine, and thus come out at the 
terminal, The Hami l ton ian for this is 

Using this switching circui t a number 
of times, of course, we can repeat an 
operation several times. For example, 
using the same idea three times in suc­
cession, a nested succession, we can do 
an operation eight times, by the appa­
ratus indicated in Fig. 15. In order to do 
so, we have three flags, a, b, and c. It is 
necessary to have flags when operations 
are done again for the reason that we 
must keep track of how many times its 
done and where we are in the program 
or we' l l never be able to reverse things. 

A sub-routine in a normal computer 
can be used and empt ied and used 
again without any record being kept of 
what happened. But here we have to 
keep a record and we do that with flags, 
of exactly where we are in the cycle of 
the use of the sub-routine. If the sub­
routine is cal led from a certain place 
and has to go back to some other place, 
and another time is cal led, its or ig in and 
final destination are different, we have 
to know and keep track of where it 
came from and where it's supposed to 
go individually in each case, so more 
data has to be kept. Using a sub-routine 
over and over in a reversible machine is 

Fig. 12. Conditional if a = 1 then M, else N. 

Fig. 13. Garbage clearer. 

Fig. 14. Do M twice. 

Fig. 15. Do M eight times. 

only slightly harder than in a general 
machine. A l l these considerations ap­
pear in papers by Fredk in , Toffoli and 
Bennett. 

It is clear by the use of this switch, 
and successive uses of such switches in 
trees, that we wou ld be able to steer 
data to any point in a memory. A mem­
ory wou ld simply be a place where 
there are registers into which you cou ld 
copy data and then return the program. 

The cursor wi l l have to fol low the data 
along. I suppose there must be another 
set of tree switches set the opposite 
direct ion to carry the cursor out again, 
after copying the data so that the system 
remains reversible. 

In Fig. 16 we show an incremental 
binary counter (of three bits a,b,c with c 
the most significant bit) wh ich keeps 
track of how many net t imes the cursor 
has passed f rom s to t. These few exam-
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Fig. 16. Increment counter (3-bit). 

ples should be enough to show that 
indeed we can construct al l computer 
functions with our S W I T C H and NOT. 
We need not fol low this in more detail. 

Conclusions 
It's clear f rom these examples that 

this quantum machine has not really 
used many of the specific qualities of 
the differential equations of quantum 
mechanics. 

What we have done is only to try to 
imitate as closely as possible the digital 
machine of convent ional sequential ar­
chitecture. It is analogous to the use of 
transistors in convent ional machines, 
where we don't properly use al l the 
analog cont inuum of the behavior of 
transistors, but just try to run them as 
saturated on or off digital devices so the 
logical analysis of the system behavior 

is easier. Furthermore, the system is 
absolutely sequent ia l—for example, 
even in the compar ison (exclusive or) 
of two k bit numbers, we must do each 
bit successively. What can be done, in 
these reversible quantum systems, to 
gain the speed available by concurrent 
operation has not been studied here. 

Al though, for theoret ical and aca­
demic reasons, I have studied complete 
and reversible systems, if such tiny ma­
chines cou ld become pract ical there is 
no reason why irreversible and entropy 
creating interactions cannot be made 
frequently dur ing the course of opera­
tions of the machine. 

For example, it might prove wise, in a 
long calcu lat ion, to ensure that the 
cursor has surely reached some point 
and cannot be al lowed to reverse again 
from there. Or, it may be found practi­
cal to connect i r reversible memory 

storage (for items less frequently used) 
to reversible logic o r short term revers­
ible storage registers, etc. Again, there 
is no reason we need to stick to chains 
of coupled sites for more distant com­
municat ion where wires or light may be 
easier and faster. 

At any rate, it seems that the laws of 
physics present no barr ier to reducing 
the size of computers unt i l bits are the 
size of atoms, and quantum behavior 
holds dominant sway. 
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