
Industrial machine vision: 
lessons and challenges 

By Steven W. Holland and Robert B. Tilove 

A review of critical technologies that have contributed to 
the success of industrial machine vision applications and 

potentially significant trends. 

A lthough research in machine 
vision began in the late 
1960s, industrial applications 

have only recently emerged. Most 
forecasts regarding the future growth 
of commercial machine vision are 
highly optimistic. We believe it is both 
instructive and timely to reflect on the 
state of the art in an effort to under­
stand, on the one hand, the key tech­
nical and economic factors that con-
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tribute to successful industrial appli­
cations, and to identify, on the other 
hand, important lessons and/or tech­
nological barriers that should influ­
ence current research and develop­
ment trends. 

General Motors has been active in 
machine vision for 15 years: work be­
gan in the Research Laboratories 
(GMR) in the early 1970s. In addi­
tion to its ongoing research effort, 
G M also has today a complementary 
activity within its Advanced Engi­
neering Staff, which is seeking to ac­
celerate the implementation of ma­
chine vision technology throughout 
the corporation through a combina­
tion of in-house development and 
strategic relationships with outside 
vendors. 

With this rich base of experience, it 
would have been easy to focus solely 
on G M applications of machine vi­
sion in preparing this report, but we 
sought a more general view. We con­
tacted a number of developers of so­
phisticated machine vision systems 
and requested their input on systems 
they regarded as exemplary of the 

state of the art. From this information 
and our internal experiences, we at­
tempted to extract some common 
threads and unifying themes. 

We found that systems widely re­
garded as "landmark" or "state of the 
art" shared many of the following key 
characteristics: 

They solve "just the right set" of 
problems. 
They utilize appropriate, some­
times novel, computational meth­
ods. 
They utilize appropriate, some­
times novel, technological tools. 
They incorporate sound basic sys­
tem design and engineering prac­
tices. 
In what follows, we shall elaborate 

on each point with references to in­
formation provided by our contacts. 
The particular systems we elected to 
use as examples were chosen mainly 
because they seemed appropriate for 
emphasizing the main points of inter­
est. This report is not a survey of in­
dustrial applications, as the number 
of impressive industrial vision systems 
today is simply too large to attempt a 
comprehensive study. We hope that 
our readers will be forgiving if they 
find that we have neglected to men­
tion their favorite system or if our list 
of key characteristics does not entirely 
match their own. 

Application scope 
A striking feature of successful vi­

sion systems is that they solve just the 
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right set of problems. The application 
scope of a vision system reflects a 
trade-off between generality on the 
one hand and ease of use and robust­
ness on the other. 

Most potential users of machine vi­
sion would like some sort of general 
purpose vision system that can easily 
be configured to perform a wide vari­
ety of tasks. But this is not possible 
for both technical and economic rea¬

Current applications of 
machine vision tend to 

attain reliability, 
robustness, ease of use, 

and maintainability at the 
expense of generality... 
The result is specialized 

tools that are like 
grapefruit knives: they 
solve one problem very 
well but are not easily 

applied to new or 
unanticipated problems. 

sons: the "general vision problem" is 
not well understood, and even if it 
were, general purpose tools would 
probably not be as effective as tools 
specifically designed for a small class 
of similar applications. 

Current applications of machine vi­
sion tend to attain reliability, robust­
ness, ease of use, and maintainability 
at the expense of generality. As a re­
sult, the application scope of most 
successful machine vision systems is 
quite small. The result is specialized 
tools that are like grapefruit knives: 
they solve one problem very well, but 
are not easily applied to new or unan­
ticipated problems. We shall describe 

below three examples of systems that 
were carefully designed for particular 
problems. 
GM 's KEYSIGHT system,1 illustrat­
ed in Fig. 1, is a gray-level system that 
inspects engine valve spring assem­
blies for the presence of assembly re­
taining keys. It first extracts edges, a 
reasonably generic step, but thereaf­
ter, KEYSIGHT's operation is appli­
cation specific. A symmetric image is 

assumed, but the center of symmetry 
may not be known precisely and is 
therefore computed using autocorre­
lation methods. Having found the 
center of symmetry, KEYSIGHT inte­
grates image intensity (in the original 
gray-level image) along a circular 
contour whose radius coincides with 
the center of the expected retainer 
keys. Images of assemblies with miss­
ing keys can be reliably distinguished 

FIGURE 1. GM's KEYSIGHT system tests for the presence of a particular 
component in a particular assembly. The system architecture is shown in the 
upper portion. The lower portion shows two of the processing steps: edge de­
tection (left) and inspection based on the integral of image intensity along a 
circular path (right). 
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from images of good assemblies on 
this basis. Because G M has a number 
of similar engine assembly l ines, 
KEYSIGHT enjoys a large potential 
market. 

Robot ic V is ion Systems Inc.'s 
(RVSI) A P O M S (Automated Propel­
ler Optical Measurement System) is 
also tailor-made for a particular ap­
plication—but in this case, the poten­
tial market is quite small. A P O M S 
was developed specifically for the Na­
val Sea Systems Command to mea­
sure 24-ft diameter, 50-ton subma­
rine propeller blades with high accu­

racy over large spaces.2 (It measures 
100 points per square inch to .0025-
in. accuracy, and requires 10 hours 
per blade.) A special robot was de­
signed specifically to carry the sensor 
head (Fig. 2). Two other interesting 
aspects of A P O M S are: a) the inspec­
tion points are taught off-line from a 
CAD-style description of the blade 
surface; and b) A P O M S will eventu­
ally be integrated with a grinding ma­
chine to correct inaccuracies. 

Vision systems that currently enjoy 
the largest customer base are found in 
the electronics industry. The systems 

have been carefully designed to meet 
specific needs in the industry, are easy 
to use and program, and interface 
comfortably with existing automa­
tion. In this sense, these systems ex­
emplify careful selection of applica­
tion scope. 

That such systems are found most­
ly in the electronics industry may be 
due to the fact that the industry is 
highly automated, competitive, and 
capital intensive, and also because the 
problem is simplified somewhat by 
clean environments and two-dimen­
sional inspection problems. View En­
gineering, Contrex, and K L A are ex­
amples of vendors specializing in such 
applications. Baird has provided a 
good overview of the applications 
and approaches.3 

Computational methods 

Application scope defines a class of 
problems to be solved; it does not de­
fine the computational methods em­
ployed in the solution. The primary 
goal in computer vision is to extract 
automatically, from physical sensor 
data, intrinsic properties of the ob­
jects in the underlying scene. But gen­
eral "image understanding" is well 
beyond our ability to define, let alone 
solve. In practical applications, vision 
systems exploit constraints, both nat­
ural (intrinsic to the underlying ob­
jects) and artificial (imposed external­
ly by the imaging system), and expec­
tations to interpret the data. 

By natural constraints we mean 
those properties of an image that rely 
on reflectance, color, texture, and 
other physical properties of the specif­
ic objects to be analyzed. Natural 
constraints can often be exploited in 
the method of inspection or measure­
ment. The E R I M (Environmental Re­
search Institute of Michigan) thick-
film inspection system, for example, 
utilizes specific reflectance properties 
of the film to establish inspection cri­
teria.4 

FIGURE 2. The APOMS system includes a custom built robot for scanning the 
sensor (camera and light source) over the propeller surface. 
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FIGURE 3. CONSIGHT uses a structured line-of-light imaging system to rec­
ognize and locate objects on a moving conveyor belt. The overall system ar­
chitecture and the lighting system concept are shown. 

By artificial constraints we mean 
those properties of the image that rely 
on the vision engineer's choice of 
lighting, lenses, and so forth. A com­
mon example of artificial constraint 
exploitation is "structured light." By 
illuminating an object with a bright 
line of light, image intensity data can 
be converted into range data, and 
easy-to-locate image features can be 
produced where there otherwise 
would be none. 

In G M ' s C O N S I G H T system, 
structured lighting is used to produce 
binary range images of objects on a 
moving conveyor belt (see Fig. 3). 5 In 
GE's turbine blade inspection system, 
a scanning structured light system is 
used to produce profile measure­
ments.6 Vendors such as Diffracto, 
Perceptron, and RVSI specialize in 
structured light applications. Colored 
(rather than geometrically patterned) 
lighting has also been used, for exam­
ple by G E 6 and Sony. 7 

Other types of expectations obvi­
ously play a critical role in machine 
vision: measured data is compared to 
expected values or is fit to predefined 
or learned models, particular bright­
ness patterns (templates) or features 
are located, and so on. We are begin­
ning to see industrial vision systems in 
which predictions are derived from a 
C A D database describing the ideal 
shape of objects in the scene, e.g., 
RVSI's A P O M S system, previously 
mentioned. 

The use of constraints and expecta­
tions are what enable practical ma­
chine vision systems to operate satis­
factorily and are also one of the rea­
sons that the application scope of 
practical systems is small. Much of 
the application-specific engineering 
and creativity that underly industrial 
applications seems bound up in ex­
ploiting or imposing the right set of 
constraints. Indeed, there have been 
cases where parts were redesigned 
and/or manufacturing processes re­

vised for the sole purpose of facilitat­
ing subsequent visual analysis.8 

Technological tools 
Technological tools relate to the 

implementation of vision systems and 
include digital image processing hard­
ware, optical image processing hard­
ware, electro-optical transducers, and 
light sources. 

Advances are being made in the use 
of custom digital hardware for effi­

cient binary and gray-level image pro­
cessing. 9 - 1 2 The main driving force for 
this is that digital image processing 
operations (e.g., filtering and correla­
tion) are local operations that are 
computed over a large image. Soft­
ware implementations on general 
purpose processors are often too slow 
for practical applications. The opera­
tions lend themselves to implementa­
tion in custom paral lel/pipel ined 
hardware. The View Engineering sys-
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tem mentioned earlier uses a custom 
processor to correlate live images 
with pre-taught templates, as do 
G M R ' s Seamsight 1 3 and M u l t i -
Match 1 4 systems. 

High-density, low-noise and distor­
tion, electro-optical transducers are 
becoming available, and these have 
paved the way for more accurate, 
higher resolution vision systems. 

Opt ical image processing tech­
niques have produced dramatic re­
sults for surface defect measurement 
in systems like GM 's F L A W S 1 5 and 
Diffracto's Di f f ractoSight . 1 6 In 
FLAWS, for example, the image of a 
coherent line of light is optically fil­
tered to remove low-frequency com­
ponents. High-intensity portions in 
the result are indicative of surface ir­
regularities. 

Good basic 
design practices 

Industrial grade systems obviously 
must be designed according to sound 
engineering principles. They must be 
reliable; robust in the presence of 
noise and other degradation of data; 
and easy to calibrate, operate, and 
maintain. 

Early systems were forced to rely 
on cameras, computers, and other 
hardware that were not intended to 
withstand the factory environment. 
Today we are beginning to see ven­
dors such as Perceptron 1 7 package 
sealed units containing light sources 
and sensors that have been pre-cali¬
brated and optically aligned. External 
precision mounts enable sensor units 
to be replaced with minimal system 
downtime. Computers and communi­
cation hardware are enclosed and de­
signed to withstand harsh environ­
ments. 

Initial laboratory-style systems 
clearly demonstrated the feasibility of 
vision technology, but rigid design 
standards are obviously needed for 
production-hardened systems. In typ­
ical industrial applications, one finds 

tons of concrete supporting cameras 
and fixtures, armored conduit, and 
N E M A - 1 2 enclosures housing cus­
tom computers and A C line filters. To 
vision scientists, these details are, per­
haps, uninteresting. To manufactur­
ing engineers, and to vendors who 
wish to sell systems, these issues' are 
paramount. 

Revolutions on 
the horizon 

Research in motion, stereo, image 
smoothing, edge and line detection, 
neighborhood processing, and other 
computational approaches to vision 
will eventually lead to vision systems 
that are far more robust, easy to use, 
and less dependent on artificial con­
straints than current systems. 

To date we have made only limited 
use of computer-based object design 
data in our vision systems. The inte­
gration of C A D data with vision will 
untimately lead to systems that are 
easy to program and self-calibrating. 

Vision is inherently parallel, and 
the eventual availability of general 
purpose highly parallel computers 
will be a fundamental breakthrough, 
not simply because of dramatic speed 
improvements, but also because en­
tirely new computational approaches 
will become practical. 

Finally, new kinds of sensors, for 
example, those that produce accurate 
range data at speeds and spatial reso­
lutions comparable to today's solid-
state T V cameras, will provide new 
sensing modalities that do not suffer 
from some of the limitations of tradi­
tional T V cameras. 

Lessons 

Among the lessons to be drawn 
are: 

It is not a cheat to do good engi­
neering. In the same way that a 
professional chooses the right tool 
for a job, vision engineers must ex­
ploit constraints and expectations 

to achieve the robust, reliable per­
formance demanded for industrial-
grade systems. The first-generation 
systems in our plants today repre­
sent significant technical achieve­
ments that evolved over a relative­
ly short period of time. We have 
every reason to be optimistic about 
the future. 
Because of the magnitude of the 
engineering and development ef­
forts involved in the design and 
implementation of a system, the 
application scope must be carefully 
chosen to permit multiple installa­
tions. We view the general lack of 
vision building blocks as evidence 
of a lack of maturity in the field, 
but increased pressures to auto­
mate and to improve quality, com­
bined with growing numbers of in­
stalled applications, are likely to 
encourage modularity. 
To date there has been little direct 
interaction between sensor devel­
opers and vision system develop­
ers. Intelligent sensors of the future 
should produce pre-processed data 
(calibrated, scaled, and distortion-
and quirk-free) in engineering 
units appropriate to the applica­
tion. Development of such sensors 
wil l obviously require close col­
laboration. 

Vision research should focus on 
technologies likely to revolutionize 
industrial vision: computational 
theories of vision, C A D interfaces, 
range and other new sensors, and 
parallel hardware. 
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