
OPTICAL CHAOS 
By Peter W. Milonni, Jay R. Ackerhalt, and Mei-Li Shih 

Notions of order and chaos go 
back a long way. The Greeks 
held that all motion could be 

decomposed into "perfect" circular 
motions, and this belief led to the the­
ory of planetary epicycles. We might 
phrase the Platonic ideal this way: all 
motion is quasiperiodic, meaning the 
Fourier transform of any coordinate 
consists of sharp spikes (Fig. 1). Poincaré 

near the turn of the century, was 
perhaps the first person to realize that 
there are (bounded) motions whose 
spectra do not have this form. Such 
systems have a broadband, continu­
ous component in their spectra, as 
shown in Fig. 2. 

Spectra of the type illustrated in 
Fig. 2 are associated with turbulent 
motion. Imagine two corks floating 
near each other in some fluid, and 
suppose the fluid flow is laminar (i.e., 
smooth and orderly). As time evolves 
the positions of the corks are correlat­
ed and their separation might grow 
linearly in time. But if the flow is tur­
bulent, the corks separate rapidly— 
typically exponentially with time— 
and their locations depend very sensi­
tively on where they started out. A 

system is called chaotic if it has this 
property of very sensitive dependence 
on initial conditions. 

Chaotic motion 
Chaotic motion is non-quasiperiodic, 

having a spectrum like that 
sketched in Fig. 2. Over the past few 
years, many physical systems have 
been found to evolve chaotically. 
Among recent developments two are 
especially noteworthy. One is the rec­

ognition that chaos may appear in 
systems described by relatively simple 
rules of evolution. The other is the 
discovery of some prevalent, univer­
sal ways by which systems may make 
the transition from orderly, quasiperiodic 

behavior to chaos. These same 
routes to chaos have been observed in 
systems as diverse as lasers,1 fluid 
flows,2 semiconductor devices,3 and 
bouncing balls,4 to name but a few. 
The one thing these systems have in 
common is that they are nonlinear, 
for the kind of chaos we are talking 
about cannot appear in purely linear 
systems. 

The remarkable thing is that such 
chaos is the result of deterministic 
rules of evolution, with no stochastic 
elements in either the equations of 
motion or the input state. How "ran­
dom" can such chaos be? It turns out 
that it can be as random as the se­
quence of heads and tails produced in 
a game of coin tossing.5 Although the 
system is fully deterministic, sensitiv­
ity to initial conditions is so strong 
that the output would be judged to 
have a quality of randomness. 

A dissipative chaotic system 
stretches the distance between initial­
ly close points (like the corks in our 
example), but at the same time man­
ages to keep the motion bounded 
within a certain portion, called an attractor, 

of the space of possible states. 
It does this by a combinat ion of 
stretching and folding that produces a 
self-similar or "fractal" object in state 
space, a so-called strange attractor. 

We will describe what appear to be 
the three most important routes to 
chaos, and illustrate them with some 

FIGURE 1. Discrete spectrum of a 
quasiperiodic system. 

FIGURE 2. Continuous spectrum of a 
chaotic system. 
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resul ts o b t a i n e d w i t h lasers . 

T h e d i f fe rent scena r i os f o r the t r a n ­

s i t i o n f r o m o r d e r t o c h a o s a s s u m e 

tha t , as s o m e p a r a m e t e r o r " k n o b " o f 

a s ys tem is v a r i e d , a sequence o f " b i ­

f u r c a t i o n s " o c c u r s tha t e v e n t u a l l y re­

sul ts i n c h a o t i c m o t i o n . I n a H o p f b i ­

f u r c a t i o n , f o r i n s t a n c e , a s y s t e m 

m i g h t g o f r o m a t i m e - i n d e p e n d e n t 

e q u i l i b r i u m s ta te t o a n o s c i l l a t o r y 

state. 

P e r h a p s the o ldes t s c e n a r i o f o r the 

t r a n s i t i o n to c h a o s is t ha t p r o p o s e d 

b y L a n d a u i n 1 9 4 4 . In the L a n d a u 

s c e n a r i o c h a o s is v i e w e d as the resu l t 

o f a n in f i n i te sequence o f H o p f b i f u r ­

c a t i o n s o r , i n o t h e r w o r d s , as the re­

su l t o f a p r o l i f e r a t i o n o f f r equenc ies 

gene ra ted b y n o n l i n e a r c o u p l i n g s . B u t 

w e n o w k n o w t ha t a s y s t e m w i t h a 

s p e c t r u m m a d e u p o f d isc re te sp i kes 

( F i g . 1 ) , h o w e v e r m a n y , c a n n o t be 

c h a o t i c i n the sense o f e x t r e m e sens i ­

t i v i t y t o i n i t i a l c o n d i t i o n s . T h a t i s , the 

L a n d a u s c e n a r i o does n o t desc r i be a 

t r a n s i t i o n t o c h a o s p e r se. 

In 1 9 7 1 R u e l l e a n d T a k e n s a r g u e d 

tha t the L a n d a u s c e n a r i o is e v e n u n ­

l i k e l y i n t ha t , a f ter a f e w H o p f b i f u r ­

c a t i o n s , a s y s t e m w i l l t e n d to b e c o m e 

c h a o t i c as the k n o b is v a r i e d fu r the r . 

V a r i o u s sys tems h a v e b e e n o b s e r v e d 

t o b e c o m e c h a o t i c a f te r the a p p e a r ­

ance o f just t w o i n c o m m e n s u r a t e f re­

q u e n c i e s . F i g u r e 3 , f o r i n s t a n c e , 

s h o w s e x p e r i m e n t a l spec t r a o f W e i s s 

et a l . 6 o b t a i n e d f r o m the o u t p u t o f a 

3 . 3 9 µm H e N e laser . T h e d i f fe rent 

t races w e r e o b t a i n e d b y t i l t i ng o n e o f 

the laser m i r r o r s . In the l o w e r t race 

there is a s ing le f r e q u e n c y a n d i ts sec­

o n d h a r m o n i c . I n t he m i d d l e t r a c e 

there are t w o b a s i c f r equenc ies , f1 a n d 

f2, as w e l l as l i n e a r c o m b i n a t i o n s o f 

these t w o f r equenc ies . U p o n fu r the r 

m i r r o r t i l t th is t w o - f r e q u e n c y m o t i o n 

g ives w a y t o c h a o s , w i t h the c h a r a c ­

ter is t ic b r o a d b a n d s p e c t r u m s h o w n i n 

the u p p e r t race o f the f igure . 

The period doubling route 

I n t h e p e r i o d d o u b l i n g r o u t e t o 

c h a o s , the re is a sequence o f p e r i o d 

d o u b l i n g (or p i t c h f o r k ) b i f u r c a t i o n s 

as a s y s t e m p a r a m e t e r is v a r i e d , a n d 

c h a o s r e s u l t s a f t e r p e r i o d d o u b l i n g 

has o c c u r r e d a d i n f i n i t u m . A t e a c h b i ­

f u r c a t i o n a f r e q u e n c y f i n the spec ­

t r u m leads t o the s u b h a r m o n i c f re­

q u e n c y f /2 as a s y s t e m p a r a m e t e r is 

s w e p t , F e i g e n b a u m h a s d i s c o v e r e d 

q u a n t i t a t i v e f e a t u r e s o f t he p e r i o d 

d o u b l i n g sequence tha t a p p l y t o v i r t u ­

a l l y a l l sys tems u n d e r g o i n g th is r o u t e 

to c h a o s . 

T h e p e r i o d d o u b l i n g r o u t e has been 

o b s e r v e d i n m a n y d i f fe rent p h y s i c a l 

sys tems. In 1 9 8 2 A r e c c h i et a l . 7 re­

p o r t e d the first o b s e r v a t i o n a n d c h a r ­

a c t e r i z a t i o n o f c h a o s i n a laser sys­

t e m . T h e y m o d u l a t e d the c a v i t y loss 

o f a C O 2 l aser a n d o b s e r v e d a p e r i o d 

d o u b l i n g to c h a o s as the m o d u l a t i o n 

f r e q u e n c y w a s v a r i e d . F i g u r e 4 s h o w s 

spec t ra r e c o r d e d b y W e i s s et a l . 6 f o r a 

d i f fe rent range o f m i r r o r t i l ts t h a n f o r 

F i g . 3 . T h r e e p e r i o d d o u b l i n g b i f u r c a ­

t i ons are ev i den t i n g o i n g f r o m (a) t o 

(d), a n d i n (e) w e see a g a i n the b r o a d ­

b a n d w a s h c h a r a c t e r i s t i c o f c h a o s . 

T h e p resence o f e x p e r i m e n t a l " n o i s e " 

u s u a l l y p reven t s the o b s e r v a t i o n o f 

m o r e t h a n th ree o r f o u r p e r i o d d o u ­

b l i n g b i f u r c a t i o n s , a l t h o u g h a v e r y 

l a rge n u m b e r o f p e r i o d d o u b l i n g s c a n 

be seen i n c o m p u t e r " e x p e r i m e n t s . " 

In the i n t e r m i t t e n c y r o u t e to c h a o s 

FIGURE 3. Two-frequency route to 
chaos in a HeNe laser. (Courtesy of 
CO. Weiss) 

FIGURE 4. Period doubling to chaos 
in a HeNe laser as one of the mir­
rors is tilted. (Courtesy of CO. 
Weiss) 
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described by Pomeau and Manneville 
in 1980, chaos develops via the ap­
pearance of increasingly frequent, ir­
regular bursts interrupting otherwise 
orderly oscillations. There are various 
types of intermittency, each corre­
sponding to a different way by which 
stable motion becomes unstable. Fig­
ure 5 shows experimental results ob­
tained by Weiss, et a l . 6 for intermit­
tency in their HeNe experiments. 

We should also mention the work 
of Abraham et al . 8 on chaos in singlemode, 

Doppler-broadened systems. 
In particular, experiments in the oper­
ating regime of the "Casperson insta­
bility" 9 provided clear evidence of the 
three routes to chaos just described. 
We and others have found these same 
routes in simplified numerical simula­

tions involving as many as 200 cou­
pled differential equations, each cor­
responding to a different velocity 
group. 

Chaos has also been observed in 
passive optically bistable systems, as 
first predicted by Ikeda. 1 0 A n early 
experiment of Gibbs et a l . 1 1 employed 
a "hybrid" device in which a delay 
time appearing in the theory was in­
troduced electronically by delayed 
feedback. Later Nakatsuka et al. 1 2 

also observed period doubling to cha­
os in an "all-optical" system employ­
ing a single-mode fiber. 

Classical chaos 

It should be clear that much pro­
gress has been made in the study of 
chaos at the classical (macroscopic) 
level. Present work in optical chaos 
extends the earlier studies to a wider 
range of systems, and includes im­
provements of earlier theoretical 
models as well as efforts to measure 
such things as Lyapunov exponents 
and dimensions of strange attractors. 
It is not clear whether any applica­
tions will come out of all this, but 
these studies have genuinely advanced 
our understanding of optical instabil­
ities. 

There are many interesting ques­
tions connected with the possibility of 
chaos in a single atom or molecule ex­
changing energy with a field. Such 
studies deal with two levels of cha­
os— the deterministic chaos of classi­
cal systems, as discussed above, and 
the fundamental sort of chaos inher­
ent at the quantum level. Theoretical 
difficulties connected with the quanti­
zation of classically chaotic systems 
were recognized by Einstein in 1917 
in connection with the old quantum 
theory, which employed certain 
(Bohr-Wilson-Sommerfeld) rules for 
the quantization of quasiperiodic 
classical systems. Einstein addressed 
the question of how to quantize nonquasiperiodic 

classical systems. The 
issue became largely irrelevant with 
the advent of the Schrodinger equa­
tion, which is free of any assumptions 
about separability of the classical mo­
tion. The question now is how classi­
cal chaos might manifest itself quan­

tum mechanically. Is the quantum be­
havior of classically chaotic systems 
much different from that of classically 
quasiperiodic systems? 

Quantum systems with discrete en­
ergy levels are quasiperiodic and so 
cannot exhibit the extreme sensitivity 
to initial conditions that is the hall­
mark of chaos in classical systems, 
i.e., systems for which quantum ef­
fects are completely negligible. The 
quantum-mechanical wave function 
evolves in an orderly, predictable 
way, although it can only provide 
probabilistic information about the 
system. A chaotic classical system, on 
the other hand, is in principle deter­
ministic, but in practical terms we 
cannot make detailed, long-term pre­
dictions about its behavior. In this 
sense quantum systems evolve in a 
more orderly fashion than their classi­
cal counterparts.13 

One aspect of the quest for "quan­
tum chaos" concerns the growth of 
energy of a system driven by an exter­
nal force, such as an atom in the field 
of a laser. In some classical models of 
periodically driven systems, the ener­
gy grows diffusively, proportional on 
average to the time. When the same 
models are described quantum me­
chanical ly, however, the energy 
grows diffusively at first but the 
growth eventually ceases. 1 4 This 
quantum suppression of classical dif­
fusive behavior can be related mathe­
matically to the Anderson localiza­
tion of a particle in a one-dimensional 
lattice with random site energies.1 5 

and provides another indication of 
the more orderly time evolution of 
quantum systems. 

Order vs. chaos 

Chaos in an idealized classical 
model offers a possible explanation of 
certain features observed in experi­
ments on the multiple-photon excita­
tion of molecular vibrations. 1 6 How­
ever, questions of order versus chaos 
are important even to our under­
standing of how the hydrogen atom 
interacts with electromagnetic radia­
tion. Beginning with the work of Bay­
field and K o c h 1 7 in 1974, experiment­
ers over the past decade have studied 

FIGURE 5. Intermittency route to 
chaos in a HeNe laser. (Courtesy of 
CO. Weiss) 
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the excitation and ionization of high­
ly excited hydrogen atoms in a micro­
wave field. The plethora of states in­
volved has made quantum-mechani­
cal analyses of these experiments 
difficult, although classical computa­
tions have shown rather impressive 
agreement with experiment. 1 8 The 
classical dynamics is found to be cha­
otic, with extreme sensitivity of the 
electron motion to the initial condi­
tions. And so the old question of 
"quantum chaos" is now at the fore­
front of efforts to understand the in­
teraction of light with the very sim­
plest of atoms. 1 9 

Although various scientists in the 
past, including Maxwel l and Born, 
have emphasized the degree of com­
plexity possible in relatively simple 
systems, it has taken a long time for 
this reality to become part of the gen­
eral world view. 

As Feynman says, "Unaware of the 
scope of simple equations, man has 
often concluded that nothing short of 
God, not mere equations, is required 
to explain the complexities of the 
wor ld . " 2 0 It is the computer, more 
than anything else, that is changing 

this misconception and providing us 
with a fresh way of thinking about 
turbulent behavior in optics and other 
branches of science. 
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