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BY PETER CLARK

round the world, there are tests of engineering

skills that have gained considerable fame: The

challenges for chess playing computers and

human-powered flight are good' examples of
efforts undertaken for fun, for education, and because they
might lead to innovation and understanding. Also, at uni-
versities, students build devices from a strictly limited
supply of materials to perform manifestly unimportant
tasks.

Members of the optics community may be interested to
know that there is also a series of such challenges in the
field of lens design. Lens designers look forward to the
series of major conferences devoted to optical design
known as the International Lens Design Conferences (ILDC,
now the International Optical Design Conference, I0DC).
ILDCs have been held every five years since 1975, and at
each conference there has been at least one lens design
problem for members of the community to consider.'®
Problem descriptions are published before the conference
and people areinvited to submit solutions. Theresults are
presented at the conference and published in the Proceed-
ings.

The problems are intended to be instructive and enjoy-
able. Some might feel that working on “impractical” prob-
lems is a waste of time, but designers can improve their
skills by doing them and by studying the other solutions.
Also, it is a rare opportunity to learn about the design
process itself by polling the participants. As for enjoy-
ment, the popularity of these problems speaks for itself:

As we wrote in 1985, “...optics is one of very few fortunate
professions that are so much fun that individuals will
devote their spare time to working a difficult problem for
just the pleasure of the challenge.” This article briefly
describes the design process, then discusses lens design
problems in general, and the 1985 and'1990 problems, in
particular.

THE LENS DESIGN PROCESS

Thelens designer's goal is to have every ray from any point
on the object intersect the corresponding point on the
image. This is rarely perfectly achieved, even on paper,
and it is never necessary to reach perfection, because of
diffraction or cost limitations. The particular steps that a
designer might take varies with the individual and the
design. A general description might be as follows:

1. Determine the specifications. Certainly, one must first
make sure that the requirements are complete, including
wavelengths, object and image size and locations, physical
constraints (size, weight, cost), and illumination and im-
age quality requirements. Occasionally the customer is
able to translate these into magnification, focal length,
field and aperture specifications, but often that is the
designer’s job.

2. Determine a starting solution. Given the requirements the
designer must find a promising starting solution, because
today’'s optimizing lens design programs are not usually
capable of drastically changing the form of a lens. For
example, they usually don’'t add or subtract elements, or




change their order within
the lens. (However,
people are investigating
“artificial intelligence” ap-
proaches that might!)
Starting solutions often
are existing designs,
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goals must be set, so that
the design process may
be stopped when perfor-
mance is acceptable.

LENS DESIGN
PROBLEMS

Figure 1. A thin paraxial reversible lens.

scaled and modified ap-
propriately.

3. Optimize the design. Optical design codes allow the
computer to automatically improve an existing design.
The designer must still participate, though, carrying out
several important responsibilities:

m Choose the variables. The designer decides which
construction parameters (curvature, thickness, index, as-
pheric coefficient, etc.) the program may vary.

w Construct the error function. Typically, the program
will adjust the variables to minimize a number that reflects
the quality of the design. Usually the error function is a
sum of squares of ray errors. The designer must make sure
that the error function represents performance well; in
particular that the wavelengths, aperture and field of the
lens are adequately sampled and weighted properly.

m Choose the constraints. If there must be limitations on
quantities that do not affect image quality, we'may require
the program to solve them exactly while improving the
error function. Typical constraints might be lens thick-
nesses or magnification.

4. Iterate, iterate, iterate. One pass is hardly ever enough!
The designer inspects the result, looking at layouts of the
lens to see if it seems feasible. Image quality is evaluated
in the appropriate manner (MTF, encircled energy,
wavefront error, etc.), and if improvement is necessary,
aberration plots and surface contributions are studied.
Our understanding of optics must help us decide what to
donext: Alter the error function? Add or delete variables?
Change some variables “by hand” to lead the program

toward a different local minimum? Abandon this design’

form for another?

The 1980 ILDC problem
was run by Richard
Juergens of Optical Research Associates. It was a test of
computer programs. A standard double gauss lens was
used as the starting point for two different designs. In one
case, the relative aperture was increased and the field
reduced. In the other, the field was increased and the
aperture reduced. The object was to have the available
optimizing routines improve these poor-performing start-
ing points with minimal human intervention. One of the
conclusions reached was that “the no human intervention
requirement is unrealistic.” Exactly how much human
help the various programs got became a source of (mostly)
good-natured controversy at the 1980 ILDC.

For the 1985 and 1990 problems, we wanted to come up
with challenges for the lens designer. They should be
unusual, so that nobody would have a design at hand, and
so that some thought would be required when determining
a starting solution. In fact, they should strive to have no
useful purpose at all, absolving their authors of ulterior
motive charges! We also decided to minimize the competi-
tive aspect of the problems. We tried (without complete
success) to avoid identifying who did which design, and we
were not prepared with “Best Lens Designer” trophies.
This was a difficult issue: For some, it takes away fun and
it denies credit to those who produced outstanding de-
signs, but we felt that participating should be its own
reward.

THE REVERSIBLE LENS
The 1985 Lens Design Problem was “the Reversible Lens,”
stated as follows:

Lens designers often have a
“heroic” approach, believing
that a lens can be made to
perform arbitrarily well by in-
creasing its complexity. For
example, if a three element

SPECIFICATIONS: FORWARD AND REVERSE
® Object Plane Diameter = 50 mm

* Entrance Pupil Diameter = 25 mm

¢ Paraxial Image/Object Magnification = -1/2

IMAGE QUALITY CRITERION:
* A simple Merit Function:

M=75mm

D(0) 1 D(17.5 mm) 1 D(25 mm)

system cannot be designed to
satisfy the image sharpness
requirement, try four ele-
ments (or make a surface as-
pheric, perhaps). In real life,

* Object to Entrance Pupil = 112.5 mm
* Reverse Entrance Pupil = Forward Image Plane

D(objectheight) is the minimum diameter (mm)
enclosing 80% of.the geometrical point spread
* Reverse Image Plane = Forward Entrance Pupil energy.

» Object, Image, and Pupil Planes must all be Flat and Real If M is different forward than backward, the
* Monochromatic, 588 nm smaller value will apply.

* No Vignetting




Figure 1 illustrates such a lens. Four planes are identi-
fied: A,B,C, and D. If plane A is considered the object, then

C is its image, and B and D are en-
trance- and exit-pupils, respectively.
It is called a reversible lens because if
the lens between B and C were flipped
end-to-end, it must still image A to B
well. The “merit function” is roughly
thenumber of resolvable points across
the image plane, ignoring diffraction.

Unlike most real-life problems, this
one had no image quality goal. Design-
ers were encouraged to submit simple
designs as well as complex ones. The
problem as stated had first-order opti-
cal requirements, but minimal non-
optical constraints (size, weight, etc.).
Norestrictions were placed onthe use
of aspherics, diffractive optical ele-
ments or extremely high or low index
of refraction.

A fine account of one very experi-
enced designer’s approach to the prob-
lem was written by Robert E. Hopkins
of Optizon Corp.® His paper should be
read to really understand the chal-
lenge presented.

THE IMPOSSIBLE LENS?
Thereversible lens was originally cho-
sen because it was unusual and be-
cause of its appealing symmetry (in
fact, the author went a bit overboard
demonstrating its aesthetic appeal),
but it was soon pointed out that it was
technically interesting as well. Adriaan
Walther of Worcester Polytechnic In-
stitute was among those who reminded
us that geometrical optics does not
permit a lens of finite focal length to
have perfect imagery of more than
one object plane. Since the reversible
lens was supposed to image Ato B and
D to C at —1/2 magnification, there
was a limit to the quality of the result
that no amount of complexity could
overcome.

Here was a challenge for the Heroic
Lens Designer! Walther, furthermore,
calculated the best result that could
theoretically be obtained using an
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Figure 2. Reversible lens
performance.
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Figure 3. Four
reversible lenses.
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Figure 4. A monocentric
reversible lens, showing that
it pays to cheat!

analytic and computational technique that he calls mock
ray tracing”®and, not surprisingly, while some of the sub-

mitted designs were very good, none
of them exceeded that limit.

The response to the problem was
gratifying. Forty reversible lens solu-
tions were received from 28 design-
ers, in 8 countries. Experience ranged
from 1 to 40 years, with a remarkable
average of 17 years. In Figure 2, the
merit functions achieved are plotted
as a function of lens “complexity,”
defined arbitrarily here as the num-
ber of surfaces plus the number of
non-spherical surfaces or unusual re-
fractiveindices. We can see that merit
functions reached nearly 30,000. A
real system, limited by diffraction,
would only reach about 7,700. The
merit function ceiling is approximately
50,000, estimated from Walther’s mock
ray trace aberration plots. Four of the
designs are shown in Figure 3.

Most of the designs had a sym-
metrical arrangement between planes
B and C. There are practical reasons
for this: The design process is greatly
simplified, because with this arrange-
ment, B-D imagery is always identical
to A-C imagery, so it doesn’t need to
be checked in a separate step. Lens
design optimizing programs can eas-
ily couple surface shapes and thick-
nesses to ensure symmetry. Thenatu-
ral question arises: Would asymmet-
ric designs have better results? The
Heroic Designer’s answer is “Of
course! I'd have more variables,
wouldn’tI?”, but we're not convinced.
Design 014 (M=13,135) (see Fig. 3) is
the best of the four asymmetric de-
signs that were submitted, and it
sports a diffractive element.

Designs 009 (M=22,388) and 033
(M=27,985) are the two best perform-
ing refractive systems. Their forms
are similar; quite long, with aspherics
on the two negative outer surfaces.
Several designers reported that these
lenses are unusually slow to optimize.
The programs gradually chip away at



the error function, without speeding up or slowing down,
for many iterations. We don’t know exactly why this is;
perhaps it is aresult of the variable coupling that is needed
for symmetry, but it may instead be caused by the merit
function ceiling.

It was a surprise that six designs received were cata-
dioptric, systems built with lenses and mirrors. Each was
designed with a concave mirror at the plane of symmetry
and space for a beamsplitter (usually in a glass cube) to
make the image accessible. The best performing of all the
reversible lenses was the catadioptric 040 (M=28,517).

THE PETZVAL PROBLEM
How does the problem of aberration correction affect the
form of lenses? A strong case can be made that, of the five
monochromatic Seidel aberrations (spherical, coma, astig-
matism, field curvature and distortion), field curvature-
known as the Petzval sum—affects the distribution of
optical power most directly. ®° The Petzval sum is the
curvature (C=1/radius) of the paraxial image surface in
the absence of astigmatism. Each surface contributes to
the Petzval sum (P) in a simple way,

P =3 C (n-n)/nn’,
where n and n’ are refractive index before and after the
surface. Field curvature cannot be affected by aspheric
surfaces or by the location of the surfaces. However, since
lens power is affected by surface location, Petzval sum can
be corrected. For example, a thin glass lens, n=1.5, has a
focal length of 100 mm. Its Petzval sum can be corrected to
zero by adding another lens of the

power, low index lenses contribute more to Petzval than
high, so the negative lenses often were low index and the
positive lenses high, reducing the negative power neces-
sary to correct Petzval.

A concave mirror contributes to Petzval with the oppo-
site sign of a positive lens, so the catadioptric systems
have an advantage: they can be corrected for Petzval sum
with just positive lenses and mirrors. This can reduce
length, and avoid other aberrations that may be contrib-
uted by the extra power that would be necessary just to
correct field curvature.

If there was no field flatness requirement, the problem
would be very different. It would not have the geometric
performance limitation. As an example, a simple
monocentric catadioptric system can be designed with
curved object and image planes that achieves a merit
function more than 100 times the best flat field system!
(See Fig. 4.)

THE NONLENS

The 1990 ILDC had two lens design problems: the “Mono-
chromatic Quartet”s, suggested by David Shafer of David
Shafer Optical Design Inc. and run by Donald O’Shea of
GeorgiaInstitute of Technology, and the NonLens, which
was somewhat related to the reversible lens. The
NonLens was suggested by Adriaan Walther and admin-
istered by the author and Carmifia Londoiio, also of
Polaroid Corp. Eighteen people submited 20 solutions.
The NonLens problem description was as follows:

same glass, whose focal length is -
100 mm. If the two lenses are in
contact, the pair has no power, but
if they are separated, the power
increases but the field curvature
remains the same. If the negative
lens is placed in a focal plane of the
positive lens, as a “field lens,” it
has no effect upon the system’s

A NONLI—'.NS IS A LENS THAT DOES NOTHING: E\-’lik\' RAY EMERGES FROM THE NO,\'LI{NS
ALONG THE SAME STRAIGHT LINE IT FOLLOWED IN OBJECT SPACE. THIS IS QUITE DIFFERENT FROM
A WINDOW, WHICH CAUSES IMAGE SHIFTS AND ABERRATIONS.”

YOL'R TASK IS TO DESIGN A NO\ILE.\JS BETWEEN TWO REAL CIRCULAR HOLES SPACED AT A
DISTANCE OF 250 MM . THE NONLENS WILL BE USED FOR A WAVELENGTH OF 588 NM ONLY.

T1+T72+ .. Tn= 100 mm

\ .

focal length. : l[\ [/ W/ 1 , AN,
| oA, 27 U e A
All-refractive reversible lenses NALRRVALES SRS -co WZ"{/// +00
must have surfaces with negative ]\ E ) } * % / /4,
power to reduce the Petzval sum. L_ et JMaﬂm'tze this ~ The hatched volume is
diameter object space.

Therefractors that performed best
placed most of that negative power
near planes B and C, where its re-
duction of the positive power of
the system is minimal. Thus the
better lenses were all quite long,
up to twice the length of the single
thin lens solution. Also, for agiven

THE AXIAL GLASS THICKNESS MUST BE 100 MM EXACTLY; REFRACTIVE INDICES MUST BE IN THE
RANGE FROM 1.50-2.00. ANY POINT IN THE OBJECT SPACE THAT IS ABLE TO SEND LIGHT
THROUGH THE HOLES SHOULD BE IMAGED ON ITSELF WITH DIFFRACTION LIMITED IMAGE
QUALITY [<0.07 WAVES ROOT-MEAN-SQUARED WAVEFRONT ERROR (RMS-WFE)]. WiTHIN
THESE CONSTRAINTS, THE GOAL IS TO MAKE THE DIAMETER OF THE INPUT AND EXIT HOLES, D,
WHICH MUST BE THE SAME, AS LARGE AS POSSIBLE.




Like the reversible lens, the NonLens was an interesting
and unusual problem. We were confident that nobody

would have prior experi-
ence with it, but it turned
out that “a lens that does
nothing” had already been
patented!"® The lens in Fig-
ure 5 allows introduction
of acube beamsplitter with-
out affecting optical per-

formance.

The NonLens problem ‘
sounds easy, but some |
thought is needed to trans-
late it into alens: To image
every object point, onto it-
self requires that either the
object point, the image
point or both be virtual. Since no
object point is more important than
any other, one must not forget all the
potentigl objects to the right of the
lens or inside the lens. Also, for ob-
ject-image planes that are not at the
hole planes, there is vignetting. The
resultant lens should behave like a
250 mm long cylindrical tube.

Clearly, just air between the two
holes does the job perfectly, so the
real problem is to overcome the glass
thickness. A plane parallel plate (thick-
ness, T, and index, n) images every
object point shifted AT along the opti-
cal axis, where

AT = F((n-D.n) T.

For T=100 mm, if n=1.5, the defocus
is 33.3 mm. This limits the acceptable
hole size to well under one millimeter
unless we reshape and redistribute
the glass. Already a design strategy
can be seen; the use of a higher n
increases the focus shift, making the
problem more difficuit.

A first-order solution must have
three properties. It must have unit
(+1) magnification, zero object to im-
age distance, and it must be afocal. If
the system is afocal with unit magnifi-
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Figure 5. A patented Nonlens.

001 (hole = 90 mm)

020 (hole = 152 mm)

019 (hole = 172 mm)

Figure 6. Four Nonlenses.

cation, then its lateral and longitudinal magnification will
both be unity. Therefore, if one plane is imaged on itself,

all of object space is also
imaged on itself. Three de-
sign variables are needed
to satisfy the first-order re-
quirements.

The top lens in Figure 6
is an example of a simple
first-order system. It con-
sists of two identical thick
elements symmetrically
placed about a central
plane. The three variables
used for the first-order so-
lution were: a) Symmetry
forces the magnification to
be unity; b) One of the two
curvatures is adjusted to make each
half of the system an afocal Galilean
telescope. The complete system is
then afocal with unit magnification;
and c¢) The remaining curvature is
varied to change the power of each
Galilean to make the object to image
distance zero.

IS PERFECTION
POSSIBLE?
Like the reversible lens, the NonLens
must work well for a multiplicity of
object planes. The rule prohibiting
perfection, however, does not apply
to systems that are afocal, with unit
(1) magnification (called “trivial” sys-
tems in some texts!). So perhaps a
perfect NonLens would be found.
Demonstrating such perfection
seems to bedifficult, since every point
inthe object space volume might need
to be examined, but it turns out that if
one plane and only one other point
are perfectly imaged, then the entire
volume is perfect. This principle was
used for the design of the lens. Two
techniques weré described by con-
tributors: In one, the object/image
plane was placed at infinity and the
pupil was at the center. Then object
to image quality was optimized as



usual, and image quality of the central point was simulta-
neously optimized. Distortion would be automatically

corrected for infinity if the lens were
constrained to be symmetric. The
other method used the hole plane as
the object/image. If the system were
symmetric, then the opposite hole
plane would also be optimized. How-
ever, distortion must be explicitly con-
trolled.

EVALUATING THE
CONTRIBUTIONS
For the NonLens, we did not explicitly
state how we would verify the results.
Since this is the age of inexpensive
computation, brute force was chosen.
Aselection of seven object planes was
made, from the center to infinity, and
five points in each plane were checked.
The hole sizes were adjusted until the
worstwavefront error was 0.07 waves.
Sohowgood could the experts make
this “trivial” system? The results can
be seen in Figure 7. Hole size is plot-
ted as a function of complexity. This
time, there seems to be good correla-
tion of performance of the best sys-
tems with complexity. The best
NonLens achieved 172 mm, a truly
excellent result.
Concentric-symmetric (C-S) lenses
have spherical symmetry about the
point half-way between the holes. Ev-
ery C-S system has unit magnification
of the central plane onto itself. If it is
afocal, it is a paraxial NonLens. Afocal
C-S systems are almost automatically
perfect NonLenses. Spherical aberra-
tion of the central plane is perfectly
corrected, as well as every aberration
of infinity except spherical aberration.
The concentric-symmetric systems
are interesting because so much cor-
rection is achieved automatically. We
“only” need to solve the spherical ab-
erration problem to achieve a perfect
NonLens. The concentric solutions
submitted were solid spheres with a
low index core and a high index shell.

Figure 7. Nonlens
performance.
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Figure 8. An impossible
perfect concentric NonlLens.

The best hole size they achieved if the constraints of the
problem are honored was only 5.4 mm.

After the conference, David Shafer
pointed out that if the refractive index
of the shell could be infinite, we would
have the elusive perfect NonLens (Fig-
ure 8). This is a wonderful result, but
aside from being unrealizable, it vio-
lates the problem’s refractive index
limit.

All the symmetric NonLens solu-
tions had the basic back-to-back
Galilean telescope form of the paraxial
illustration. Here, too, the correction
of Petzval curvature affected the form
of the result. A simple Galilean tele-
scope has two elements, plus and mi-
nus, separated by the sum of their
focal lengths. To be realizable, the
negative lens must always have the
shorter absolute focal length. There-
fore, forrefractive systems where both
lenses are of the same glass, the
Petzval sum is positive. The only way
to correct it is to change refractive
indices. So the best NonLenses have
most of their glass thickness in low
indexglass with thin negative elements
of high index, to reduce the Petzval
sum.

NonLens 019 achieved the largest
hole size, 172 mm. It has only six
elements, all index 1.50 except the
two very thin negative lenses (1.98). It
is a deceptively simple looking de-
sign, but every surface of 019 is as-
pheric. It can be compared with the
next largest lens, 020 (152 mm), which
has only spherical surfaces, but twice
as many elements.

THE FUTURE

The next International Optical Design
Conference is scheduled for early of
1994. We expect that lens design prob-
lems will continue to be part of the
program. In the meantime, the chal-
lenge is to identify new and innovative
problems, and the volunteers to run
them. Suggestions are welcomed.
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— Cambridge University Press—

Perhaps a new direction should be taken: Chromatic
correction was not included in the last three problems. A
visual system might be interesting, an anamorphic prob-
lem, or an illumination problem? Let your imagination go!
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