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0 lasers really exhibit chaos? Irregular

intensity fluctuations were observed even in
the earliest days of lasers. For example, the
“spiking” fluctuations present in the output of
a ruby laser were difficult to miss. All fluctua-
tion phenomena observed were then commonly
labeled “noise.” Since that time, however, it
has become evident that apparently random
fluctuations can also occur in totally determin-
istic systems—those that are modeled by sys-
tems of equations containing no sources of
noise. Such behavior is commonly called chaos.



The purpose of this article is to describe the advances
made in the identification of chaotic behavior in lasers and
to focus on the specific theme of controlling chaotic lasers.
We will first briefly review the origins of the basic concepts
of chaos and nonlinear dynamics in a general context and
see how beautifully the history of chaotic lasers is inter-
twined with that of meteorology and fluid dynamics, the
fields in which the crucial role of chaos was first recognized.

One of the most important realizations of the last 30
years has been that chaotic behavior is commonplace in
physical, chemical, and biological systems.! Most scientists
and engineers have begun to recognize this inescapable fact.
The advent of computers has been responsible for this awak-
ening, not just in meteorology, but in every branch of science,
from astronomy to zoology. A new branch of mathematics,
dynamical systems theory, has developed rapidly and now
forms the universal mathematical language for the descrip-
tion of chaotic systems in science and engineering. Nonlinear
dynamics is the discipline that includes experimental and
theoretical investigations of chaos and instabilities.

CHAOS AND THE WEATHER

John Von Neumann, the father of modern computers,
dreamed that one day we would be able to predict accurate-
ly, and perhaps even control, weather patterns around the
globe.? In his book Infinite in All Directions, physicist Free-
man Dyson®discusses the views of Von Neumann, who had
the “reputation of being the cleverest man in the world.”
Von Neumann hoped that computers would allow us to
“divide the phenomena of meteorology cleanly into two cat-
egories, the stable and the unstable. The unstable phenome-
na are those that are upset by small disturbances, the stable
phenomena are those that are resilient to small disturbances
.+ .. All processes that are stable we shall predict. All
processes that are unstable we shall control.”

Dyson remarks that few people took Von Neumann's
dream seriously, including meteorologists. In fact, studies on
the problem of convection of a fluid heated from below (a
highly simplified model of the Earth’s atmosphere) by
Edward Lorenz, an MIT meteorologist, seemed to indicate
that Von Neumann's dream could never be realized. Lorenz’s
numerical computations’ revealed a totally new aspect of
behavior in this dynamical system; large, irregular fluctua-
tions appeared to originate from an innocuous looking set of
three-coupled, nonlinear ordinary differential equations with-
out any sources of noise or fluctuations included in them.

Even more surprising was the incredible sensitivity of a
solution of these equations to a small difference in initial
conditions. Lorenz found that very slightly different initial
conditions resulted in an exponential divergence of solu-
tions. Lorenz engraved this aspect of chaotic dynamics in
our minds through the title of a talk he gave in 1972, “Pre-
dictability: Does the Flap of a Butterfly’s Wings in Brazil set
off a Tornado in Texas?”'™ Indeed, Dyson comments that “a
chaotic motion is generally neither predictable nor control-
lable. It is unpredictable because a small disturbance will
produce exponentially growing perturbation of the motion.

It is uncontrollable because small disturbances lead to other
chaotic motions and not to any stable and predictable alter-
native. Von Neumann’s mistake was to imagine that every
unstable motion could be nudged into a stable motion by
small pushes and pulls applied at the right places.”

In the few years since Dyson wrote about the failure of
Von Neumann'’s dream, there has, in fact, been significant
progress toward its realization; reasonably accurate predic-
tions can be made for chaotic motion over fairly long periods
of time,” and the control of chaotic motion has been demon-
strated for some “simple” chaotic systems, including lasers.

CHAOTIC LASERS
The connection between chaotic dynamics and laser instabil-
ities was not made until Hermann Haken, in a short paper®
remarked on a beautiful similarity that he had discovered
between the equations for a fluid studied by Lorenz a dozen
years earlier, and the semi-classical equations that describe
the operation of a single-mode laser. He found that the three
equations of motion for the electric field of the laser, the
polarization of the active medium, and the population inver-
sion were identical in form to the Lorenz equations after
appropriate transformations of the variables. These equa-
tions contained no noise sources, yet their similarity to the
Lorenz equations implied that a laser should display irregu-
lar deterministic fluctuations in certain parameter regimes.

A search for laser chaos ensued, and several groups
around the world searched for the right laser system to dis-
play Lorenz chaos.” This was not as simple as it may seem.
A single-mode laser system had to be found where the
decay rates of the polarization and population inversion of
the active medium, as well as that of the electric field were
of the same order of magnitude, for a valid comparison
with the Haken-Lorenz equations. In most laser systems
(He-Ne, CO,, semiconductor, Nd:YAG, etc.), the polariza-
tion decay rate is much greater than the inversion and field
decay rates, resulting in the effective reduction of the three
variable system of equations to two dynamical variables.
Chaos cannot occur in a two variable system of equations; a
mathematical theorem tells us that we can only have stable
or periodic dynamics in a two-dimensional system. We thus
have to find a single-mode laser in which all three decay
rates are comparable to see this type of chaotic behavior.
Finally, a rather exotic laser system, the far-infrared ammo-
nia laser, was settled upon, which had the right features to
display Lorenz-like chaos.®

How can we tell if the observed intensity fluctuations in
such a laser are really a signature of chaotic behavior? One
of the most straightforward approaches to this question is to
examine the system behavior while varying one of the para-
meters. If a sequence of behavior, or route to chaos, is found
that has been identified from the study of deterministic
model equations for the system, one may be reasonably sure
that chaotic behavior has been observed. Extensive experi-
ments and numerical modeling by several groups have now
established that chaotic behavior is indeed displayed by the
ammonia laser.
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The reader may ask if laser chaos is restricted to exotic
systems such as the ammonia laser. Many “garden variety”
laser systems can exhibit chaotic behavior if they operate in
multiple longitudinal or transverse modes; once again, these
additional modes provide the three or more degrees of free-
dom necessary for the system to be chaotic. If the modes are
nonlinearly coupled to each other, chaos can result. For
example, nonlinear mode-coupling through four-wave-mix-
ing in the active medium may generate chaotic intensity
fluctuations of individual modes in a multimode dye laser.!
External feedback often leads to chaos in semiconductor
lasers," a matter of great practical concern. During the 1980s,
there were also several observations of chaotic behavior in
single-mode lasers with modulated losses and pumps. Arec-
chi and colleagues demonstrated chaos in a loss modulated
CO, laser,” while Winful and colleagues®showed that under
certain conditions a semiconductor laser could be driven
chaotic by periodic modulation of its injection current. The
periodic modulation effectively provides the third degree of
freedom necessary to observe chaos in these laser systems.
One of the most interesting examples of laser chaos was dis-
covered by Tom Baer (then at Spectra-Physics), who studied
the generation of green light from a diode laser pumped
Nd:YAG laser with an intracavity KTP crystal.*

THE GREEN PROBLEM

Baer found that though the Nd:YAG laser operated in a sta-
ble steady state without the intracavity crystal, large irregu-
lar intensity fluctuations were sometimes observed when
the intracavity KTP crystal was used to generate green light
from the system (Fig. 1). Baer noted that this behavior
occurred when the laser operated in three or more longitu-
dinal modes. He hypothesized that sum-frequency genera-
tion in the KTP crystal could provide mode-mode coupling
that would destabilize the laser. This was not a desirable sit-
uation for proposed practical applications of the system, in
optical disk readers, for example. The unstable behavior of
this system soon came to be known as the “green problem.”

The chaotic nature of the green laser was investigated
in some detail and connected to the destabilization of relax-
ation oscillations.” Relaxation oscillations are always pre-
sent in a laser; they are the result of power exchange
between the atoms of the active medium and the electric
field in the cavity and are normally very small in amplitude.
It was found that the nonlinear coupling of the modes
through sum-frequency generation resulted in the destabi-
lization of relaxation oscillations in the green laser system.
A reasonably accurate model was developed for the system,
that could predict many aspects of system behavior, both
chaotic and non-chaotic.

As may be expected, several methods were proposed
and implemented to get rid of the fluctuations. These meth-
ods consisted of system modifications such as restricting the
laser to operate in two orthogonally polarized modes by
adding wave plates to the laser cavity’” or proper orienta-
tion of the YAG and KTP crystals.” These are typical exam-
ples of what has been the traditional reaction of scientists
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and engineers when faced with irregular fluctuations in a
laser system—redesign the system so that it is inherently
stable or try to find a parameter regime of the system where
chaos does not exist. A departure from this traditional
mindset required a radically new perspective and approach
toward grappling with chaotic systems.

CONTROLLING CHAOS
In the spring of 1990, Ott, Grebogi, and Yorke (OGY) of the
University of Maryland introduced such a new perspective
in a seminal paper® entitled “Controlling Chaos.” “Control”
refers to achieving periodic or stable output from a chaotic
system without changing the parameters of the system, or
the system itself, in a permanent way; only small time-
dependent perturbations about the ambient parameter val-
ues are allowed. OGY observed that when irregular, chaotic
behavior is observed, we often do not have available a
detailed mathematical model for the dynamical system that
will accurately describe its behavior over a wide range of
operating parameters. If we want to develop techniques for
control of such chaotic systems, two crucial questions arise.

m Can we develop a dynamical control strategy based
primarily on experimental measurements made on the sys-
tem, without trying to build a mathematical model that is
globally accurate?

# Can we control the system without making large
changes in parameters or variables?

OGY showed that both these goals can be achleved at
least for some chaotic systems. A chaotic system can be con-
trolled with small, judiciously chosen changes to parame-
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Figure 1

The laser system in which the “green problem”
was observed by Tom Baer. Large, irregular
amplitude fluctuations of the green
light emitted by an Nd:YAG laser
with an intracavity KTP crystal
for frequency doubling.
The fluctuations are not
present without the
intracavity KTP
crystal.™
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ters made on the basis of observations of a system variable,
such as the fluctuating output intensity of a laser. It is the
very sensitivity of a chaotic system to small perturbations
that allows us to control it with such corrective changes.

The OGY algorithm for chaos control was based on the
observation that a chaotic attractor—the geometrical object
toward which a system'’s trajectory in phase space con-
verges—typically has a large number of unstable periodic
orbits embedded in it. The system visits the neighborhood
of these unstable periodic orbits from time to time; what is
needed for control is a technique to nudge the system back
to a periodic orbit when the system shows its inherent ten-
dency to depart from it. The basic elements of the OGY
algorithm are simple. Even a nonlinear system can be
described by a linear approximation, once it approaches

Occasional Proportional Feedback Algorithm

L L L L LI
——

The occasional proportional feedback (OPF) algorithm used for
control of the chaotic laser. The four parameters of the control
| circuit, T, dt, pand |_are shown.
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close enough to a periodic state or fixed point (for example,
an unstable steady state). By observing the dynamics of the
system in the neighborhood of the fixed point or periodic
state, the direction and amount of instability can be deter-
mined. We can then use that information to keep the system
near the fixed point or periodic orbit.

To make this point clear, imagine trying to balance a
ball at the center of a saddle. The saddle surface is unstable
in the direction of convexity; the ball will fall off along the
sides of the saddle. The amount of instability, or how fast
the ball falls off, is determined by the curvature of the sad-
dle. In the other direction, the saddle is stable; the ball
returns toward the center if displaced along the ridge of the
saddle. The OGY algorithm tells us essentially how to move
a saddle under the ball so as to keep it balanced at the cen-
ter. Once we know the curvature of the saddle in the unsta-
ble direction, we can balance the ball at the center by mak-
ing observations of the position of the ball from time to
time. If control is initiated when the ball is sufficiently close
to the center, we can maintain control in a small neighbor-
hood of the center with only small corrective motions.

The OGY algorithm was implemented in a beautiful
experiment in late 1990. Ditto, Rauseo, and Spano showed
how the OGY algorithm could be applied to stabilize the
irregular motion of a mechanical system—a tinsel-like rib-
bon of magnetoelastic material that swayed chaotically in
an applied alternating magnetic field ** The OGY method
and related theoretical and experimental developments in
physics, chemistry, and biology have recently been
reviewed by Shinbrot ef al.2

The dynamical control of chaotic systems offers several
possibilites that are difficult to achieve with the traditional
approach in which we adjust system parameters to be in a
periodic or stable regime. First, it is possible to switch
between two or more periodic waveforms rapidly with
dynamical control. Second, it is possible to stabilize complex
waveforms that may only occur over a very small parameter
range for the system without control. Finally, with active
feedback we can extend the range of system parameters over
which a periodic orbit or steady state can be maintained.

DYNAMICAL CONTROL OF A CHAOTIC LASER

It was clear to us at Georgia Tech, soon after publication of
the OGY paper, that it would be of great interest to try and
apply these new techniques to the chaotic green laser, There
was the purely scientific motivation: Could we demonstrate
control of a chaotic laser in an experiment and stabilize sev-
eral different periodic waveforms for the same laser para-
meters? There was also the practical motivation: Could such
control techniques be used to stabilize chaotic lasers with-
out having to redesign the system?

It was at this point that one of us (Roy) happened to
learn that Earle Hunt (Ohio University) had developed an
analog circuit to stabilize periodic waveforms generated by
a chaotic diode resonator circuit. Hunt used a variant of the
OGY approach, which he called occasional proportional
feedback (OPF).»* The name arose from the fact that the



feedback consisted of a series of perturbations of limit-
ed duration df (“kicks”) delivered to the input drive
signal at periodic intervals (T) in proportion to the dif-
ference of the chaotic output signal from a reference
value. The OPF technique seemed perfectly suited for
an attempt to stabilize periodic orbits of the green
laser, since the circuit could be easily operated in the
microsecond time scale required for the laser.

The laser intensity was detected with a fast photo-
diode and this signal provided the input for the control
circuit. The output of the control circuit modified the
injection current of the diode laser used to pump the
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Nd:YAG crystal. This seemed to be the mosi natural
and convenient choice of control parameter. To adapt
Hunt'’s circuit for control of the autonomously chaotic
laser, we had to supply an external timing signal from a
function generator. This determined the interval T
between “kicks” applied to the pump laser injection
current. Even though there was no external periodic
modulation responsible for the chaotic dynamics, the
relaxation oscillations of the laser intensity provided a
natural time scale for perturbative corrections. The
interval between kicks was thus adjusted to be roughly
at the relaxation oscillation period (approximately 100
kHz), or a fractional multiple of it. The OPF algorithm
is shown schematically in Figure 2. The four parameters
of the control circuit are: The period T, duration of the
kicks d¢, reference level L. which measures the devia-
tion of the signal, and the proportionality factor p,
which determines the amplitude of the kicks.

The results of application of OPF to the laser were
quite remarkable.” We were able to demonstrate stabi-
lization of a large variety of periodic waveforms with
perturbations of a few percent applied to the pump
laser injection current. A typical chaotic waveform,
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Figure 3

An example of stabilization of periodic orbits or waveforms of the chaotic laser.
A typical chaotic time trace for the fundamental wavelength is shown in (), in
which the underlying relaxation oscillations are present. The control signals,
waveforms and their fast Fourier transforms are shown in (b), [c), and (d) for
three periodic orbits that have been stabilized. The relative fluctuations of the
control signal about the ambient value are of the order of a few percent.?

together with several periodic waveforms stabilized in
this way, are shown in Figure 3. The control signal fluctua-
tions are shown above the intensity waveforms. The partic-
ular waveforms stabilized can be selected by changes of
control circuit parameters, mainly the time period T and the
reference level I .

For the control circuit to work successfully, the laser
had to be operated so as to generate very little green light.
The laser is “weakly” chaotic in this regime; the rate of sep-
aration of initially close trajectories in phase space is small,
and only one direction of instability occurs. If a significant
amount of green light was generated, and the laser was
highly chaotic (particularly if the laser has more than one
direction of instability in phase space), the circuit may be
unable to stabilize the laser.

STABILIZATION OF THE STEADY STATE

Of course, these experiments beg the question: If the laser is
in a chaotic state, can we apply small corrective perturba-
tions to obtain a stable output? This is, of course, interesting
from an engineering standpoint and for practical applica-
tion. Much to our own surprise, we found that we could

indeed achieve a stable output by adjusting the reference
level to the mean of the chaotic fluctuations and matching
the period T to the relaxation oscillation period. The control
voltage fluctuations became extremely small once the
steady state was controlled. Figure 4 shows the transient
behavior of the laser intensity fluctuations as they are
reduced to small fluctuations about the steady state as well
as the control signal fluctuations during the stabilization
process.

If the control parameters are fixed and the pump power
of the laser is increased or decreased after the steady state is
stabilized, the control signal fluctuations increase rapidly,
and control is lost as the laser goes into periodic or chaotic
oscillations. Clearly, one needs to change the control circuit
parameters as the laser pump power is changed. A proce-
dure called “tracking” accomplishes this change of control
parameters in a systematic fashion. We applied such a track-
ing procedure to our laser; the control circuit parameters are
varied to minimize the control signal fluctuations at each
value of the pump power, which is increased in small incre-
ments. Our experiment illustrated the general algorithms
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Stabilization of the steady state. The transients toward the
steady state are shown when the control signal is applied to a
chaotic laser. The chaos here is due to reflective feedback, not
the infracavity crystal.

for tracking periodic orbits developed recently by Ira
Schwartz and his colleagues at the Naval Research Labora-
tory.*¥ By combining stabilization and tracking, we main-
tained a stable steady state (Fig. 5) as the laser pump power
was increased from threshold (21 mW) to more than three
times above threshold (about 80 mW).? Without the control
circuit, the laser intensity went into periodic oscillations at a
pump power of about 25 mW, and then into chaotic fluctua-
tions, as indicated in the figure by open circles and crosses.

CURRENT RESEARCH AND FUTURE DIRECTIONS
Experiments on the control of chaotic lasers have been per-
formed in several laboratories around the world. In a series
of elegant experiments, Pierre Glorieux and his co-workers
in Lille, France, have demonstrated both stabilization of
periodic orbits and of the unstable steady state in an
Nd:fiber laser.”* Stabilization of the steady state was
achieved by continuous derivative feedback in their experi-
ments. They also demonstrated the tracking of unstable
periodic orbits as system parameters were varied. Another
experiment in Lille showed that the unstable branch of a
bistable optical system could be stabilized by these feedback
techniques.” The experiments of Brun and colleagues in
Zurich on an NMR laser succeeded in systematically stabi-
lizing several periodic orbits by an extension of the OGY
technique.® Apart from these experiments, several groups
have investigated the application of such control techniques
to models of semiconductor laser diodes destabilized by
optical feedback from an external reflector.®*

The implementation of the control algorithm has been
done electronically so far éither by digital techniques or by
analog hardware. An alternative approach, particularly if
speed is crucial, may be the development of all-optical pro-
cessing and feedback. To our knowledge, no experiments
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have demonstrated dynamical control and stabilization of
chaos through purely optical techniques. Could neural net-
works (opticaily implemented, for speed) be used to predict
future behavior of the chaotic system and help determine
optimal corrections?*

In the OCY technique, the system must come sufficient-
ly close to an unstable periodic orbit to stabilize it success-
fully with small perturbations. What if we don’t want to
wait for long periods of time, as is typically the case for
complex waveforms? The Maryland group has developed a
technique called “targeting,” in which a chaotic system
moves from its current state to a desired state in as short a
time as possible through small perturbations. This is still a
very active area of theoretical research, and the technique
has yet to be implemented on an optical system or device.
The targeting algorithm has been demonstrated experimen-
tally on the magnetoelastic ribbon system by Shinbrot et al.
with impressive results.*

The robustness of control techniques to external noise
and drift of parameters is a crucial technical issue that will
have to be investigated in detail for the practical implementa-
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tion of these techniques. On the more fundamental side, a
difficult issue that is sure to emerge in the near future is the
influence of intrinsic (quantum) noise on nonlinear dynamics
and the resulting limitations on control of chaotic systems.

Finally, an important area of research in the future will
be the control of chaotic systems with higher dimensional
chaotic attractors (for example, those with more than one
direction of instability in phase space) and sytems that pos-
sess both spatial and temporal degrees of freedom.”* Laser
arrays may be the test-bed for application for techniques
that are being developed to control spatio-temporal chaos.
Here the emphasis may be on the dynamical control of spa-
tial profiles, including the periodic (or aperiodic) scanning
of beams in space.
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