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C onventional semiconductor lasers rely on the recom­
bination of electrons from the conduction band with 

holes in the valence band. We have recently developed a 
radically different type of semiconductor laser, called the 
quantum cascade (QC) laser. 1 , 2 In the QC laser, light is 
emitted when electrons make transitions between bound 
states created by quantum confinement in a multiple-
quantum well heterostructure. The InGaAs/A l InAs 
structure, grown lattice-matched to InP by molecular 
beam epitaxy, consists of 25 periods cladded by high 
confinement ( Γ = 0.5) waveguiding layers. As shown in 
Figure 1, each period consists of a superlattice electron 
injector which "feeds" electrons in the third state of the 
active coupled-quantum well active region. The lifetimes 
were engineered to maintain popula t ion inversion 
between state n=3 and n=2. Approximately one phonon 
energy separates the n=2 and n=1 states. The resonant 
nature of the optical phonon emission between these two 
states shortens the lifetime of the n=2 state, preventing 
any significant population build-up on the latter and 
mainta in ing the popu la t ion inversion. In the first 

devices,1 the laser transition was diagonal in real space 
between states wi th reduced spatial overlap. T h i s 
increased the l i fet ime of the upper n=3 state and 
decreased the escape rate of electrons into the continu­
um. However, being less sensitive to interface roughness 
and impurity fluctuations, a laser structure based on a 
vertical transition, i.e., with the initial and final states 
centered in the same well, exhibits a narrower gain spec­
trum and thus a lower threshold. 3 To prevent electron 
escape in the continuum, the vertical transition struc­
ture's superlattice injector region is designed such that, 
under bias, a miniband faces the lower states of the active 
region for efficient carrier escape from the ground state 
of the lasing transition, and a minigap faces the upper 
state for efficient carrier confinement (see Fig.1). 

The inset of Figure 1 shows the peak optical power 
versus injected current characteristic of a 2.4 m m long 
device patterned in a 15 μ m wide stripe operating at 
4.6 μ m wavelength. The threshold density in pulsed 
mode is Jth = 1.7 kA/cm-2 at 10K and 3kA/cm-2 at 
100K, wh ich is two to three times lower than the 
threshold density of the original structure based on a 
diagonal t rans i t ion . 1 , 2 The measured slope efficiency 
(for uncoated devices) is 300 m W / A per facet with a 
maximum peak power above 60 mW. 

In another set of experiments, devices were designed 
using the same InGaAs/AlInAs heterostructure material 
at λ = 8 . 4 μ m . Threshold densities of 2.1 k A / c m 2 at 10K 
and 2.8 k A / c m 2 at 100K, with a maximum power of 
40 m W at 10K and 25 m W at 100K were obtained in 
pulsed operation. 4 
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I n homogeneous structures the experimentally mea­
sured absorption, i.e., the ratio of transmitted and 

input intensity, is directly related to the imaginary part 

Figure 1. a) Schemat ic conduct ion band diagram of a portion of the Q C laser 
under operating condi t ions. A s shown, the superlatt ice electron injector is 
des igned a s an electron Bragg reflector to create a minigap that b locks the 
electron e s c a p e from level 3. Electrons are tunnel-injected via a 6 .5 nm 
AllnAs barrier into the n = 3 s u b b a n d of the active region. The wavy line indi­
ca tes the 4 .6 μ m wavelength transition responsib le for laser act ion. Inset: 
Peak optical output power from a single facet versus injection current for the 
structure. The pulse length is 70 n s e c . The heat sink temperature is 1 0 K 
(solid line), 8 0 K (dashed) and 1OOK (dotted). 
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